

SECURITY CLASSIFICATION OF THIS PAGE (Whon Date Entered)REDISUCON

REPORT DOCUMENTATION PAGE NO .RBEFORE COMPLETING FORM

2. GOVT ACCESSION N.3RPI EN TSTk UMS

4. ITL (ad Sbtile)5. TYPE OF REPORT &PERIOD COVERED

Semi-Annual Tech. Report
Converting NSW From MVT to MVS 10/1/80 - 3/80/81
National Software Works 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(&) S. CONTRAC.T OR GRANT NUMBER(@)

N. Ludlam - D. DeLa Roca MDA 903-80-C-0231

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Univrsit of alifrniaAREA & WORK UNIT NUMBERS
O~fie ofAcadmic ompuingProg. Elemt: 62708E
O~fie ofAcadmic ompuingProgram Code: OT10

Los Angeles, CA 90024 AP re o 531
I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Proj ects Agency 6//8

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract enterod in Block 20. It different froem Report)

Distribution Unlimited I

III, SUPPLEMENTARY NOTES

19. KEY WORDS (Continue ont reverse side It necessary and Identify by block number)

National Software Works, ARPANEr, virtual remote batch terminals, virtual
line terminal,, MSG,, PCP, PL/MSG, NSW architectural changes, NSW packages,
file package, foreman, batch job package, virtual memory,- interprocess
communication, interactive debugging, process creation, process

......cQ1fllatnr prrorram logic
20. ABSTRACT (Continueo on reovorse aideif necessary and Identify by block number)

This report covers technical developments at UCLA-OAC relating to the
National Software Works (NSW), during the period October 1, 1980, through
March 30, 1981, and is specifically concerned with the conversion of %
existing software from the IBM System/360 MVT environment to the IBM 0
Systein/370 WVS enviornment.

DD 1JAN 3 1473 EDITION OF I NOV 65 IS OBSOLETE
S/N 0102 LF 014 6601 *

SECURITY CLASSIFICATION OF THIS PAGE (*%oen Data Entaced)

%t

REPORT SUMMARY

This report covers technical development at UCLA relating to the
National Software Works (NSW) during the last quarter of 1980 and the
first quarter of 1981.

The primary goal of the, NSW project at UCLA is to make the IBM
System/360 and System/370 family of computing systems "tool-bearing
hosts", within the NSW. Previous phases of the project have made the
UCLA implementation of the (now obsolete) operating system OS/MVT an NSW
tool-bearing host. This phase of the project is to make the current IBM
operating system, OS/MVS, a tool-bearing host.

This report is primarily concerned with the conversion of existing
software from the MVT environment to the MVS environment.

The subsequent sections correspond to documents stored in the NSW
documentation repository maintained by the NSW Operations Contractor, so
each section has been made self-contained. For example, each section
has its own reference summary and appendices:

VI,

- ii -

CONTENTS

REPORT SUMMARY . i.

PART I -- NSW Processes under MVS -- Basic plans
q..'

Section PAM

1. PERSPECTIVE.................... 2

2. THE NEW ENVIRONMENT 4 .5

Virtual Memory -- design opportunities 4
Inter-Address-Space Communications 4
Batch Job Scheduling.............. 5 ...S
Interactive Job Scheduling 6
THREADER Commutator 6
NSW Architectural Changes 7
Relaxation of the TGET WAIT Problem 7

3. CHANGES TO NSW PACKAGES 8

PL/MSG 8
PL/PCP. 9
MSG Direct Connections 9
The File Package 9
The Foreman 10
The Batch Job Package 11Overall Design Strategy12

REFERENCES16

PART II -- THREADER -- A Commutator for PL/I Coroutines

Section pae

1. OVERVIEW OF THREADER 19
Applications of the THREADER Package 20

How THREADER Relates to the Problem Program 22
Inter-thread Communicat ion24

-i i -''

£.

2. THREADER SUBROUTINE CALLS 26

THSTART - - Starting a Subthread. 26
THWAIT/THWAITh - - Letting Other Threads Run. 28
THPOST - - Marking Events Complete. 30

3. OTHER FACILITIES. 31

MYTHB -- The Current Thread Handle... 31
"PROCESS" - - PL/IISG Support. 33
Managing ECB's in PL/I 34
ECBADDR -- Using PL/I Events 35

REFERENCES 36

PART III -- The UCLA Virtual Remote Batch Terminal Support
Package

Sect ion palge

1. OVERVIEW OF THE VRBT. 38

2. VRBT ADMINISTRATION 40

3. VRBT CHARACTERISTICS. 41

4. THE VRTB PACKAGE ENVIRONMENT. 44

5. VRBT RECORD FORMATS 46

6. VRBT DATA FLOW. 47

Sending Data Sets. 48
Sending Messages 51
Receiving Data Sets. 51

7. SPECIAL SCHEDULING MODE 55

8. VRBT SUBROUTINE CALLS 57

VRBTOPN -- Materializing the VRBT. 58
VRBTCLS -- Destroying a VRBT 60
VRBTSHT -- Requesting Shutdown 61
VRBTPUT -- Sending Data to JES2. 62
VRBTGET -- Receiving Data from JES2. 63
VRBTACK -- Providing Error Control 65

9. THE VRBT LOG. 66

10. THE VRBT DEMONSTRATION PROGRAM67

11. APPENDIX A -- PL/I DECLARATIONS69

12. APPENDIX B -- ASSEMBLER DECLARATIONS70

13. APPENDIX C -- JES2 INITIALIZATON PARAMETERS75

14. APPENDIX D -- VTAM DECLARATIONS76

15. APPENDIX E -- ALLOCATING VTAM ID'S 77

Calling Sequences77
Allocating an APPLID77
Freeing an APPLID78
APPLALOC and the OPERATING SYSTEM78
Allocation Technique78
Defining the APPLID pools78

REFERENCES80

PART IV -- The UCLA Virtual Line Terminal Support Package

Section pA "

1. OVERVIEW OF THE VLT82

Conversational Partners83
Connection Protocol Type 183
Connection Protocol Type 2 83

The VLT Interface84 a

Error Handling85
Tasking Constraints85
Ensuring Wait-free Operation86
The VLT Package Environment87
VLT Record Formats87
Keyboard Management88

2. VLT SUBROUTINE CALLS89

VLTOPEN -- Materializing the VLT89
VLTCLOS -- Destroying the VLT92 e
VLTPUT -- Sending Data Through the Virtual Keyboard93
VLTGET -- Receiving Data for the Virtual Printer94
VLTATTN -- Pressing the Virtual Break Key95
VLTCONT -- Sharing the Task With the VLT96
VLTPRG -- Purging Pending Events97
VLTKNT -- Counting Pending Events98

- iv -

'S

a!

a'

g ;.~e ~a Ke..L .< -. ; e a' L, '.V"".". -~~e .'.'',.''', %,-% .

3. THE VLT LOG 99

4. THE VLT DEMONSTRATION PROGRAM. 101 -

5. APPENDIX A -- PL/I DECLARATIONS. 102

6. APPENDIX B -- ASSEMBLER DECLARATIONS 103

7. APPENDIX C -- VTAM DECLARATIONS. 108

REFERENCES 109

PART V -- FAKEMSG -- Debugging MSG Programs Without EXCHANGE

Section p~

1. OVERVIEW OF FAKEMSG. 111

2. STRUCTURE OF FAKEMSG 112

3. SPECIFIC PL/MSG SERVICES 113

MSGMP -- Materialize an MSG Process 114
MSGSTOP -- Destroy an MSG Process 114
MSGSETP -- Declare Posting Mechanism. 114
MSGAA -- Arm Process for Alarms 114
MSGJOUR -- Log MSG Events 114
MSGRGM -- Receive Generic Messages. 115
MSGRSM -- Receive Specific Messages 115
MSGRA -- Receive Alarms 115
MSGSGM -- Send Generic Messages 115
MSGSSM -- Send Specific Messages. 115
MSGSA -- Send Alarms. 116
MSGRSND -- Rescind Pending Events 116
MSGRSNC -- Resynchronize Communication. 116
MSGOC -- Open Direct Connections. 116
MSGCC -- Close Direct Connections 116
MSGGET -- Receive Connection Data 116
MSGPUT -- Send Connection Data. 117
MSGEOD -- Prepare for Connection Close. 117

4. CONCLUSIONS 118

REFERENCES 119

v~

PART I

NSW PROCESSES UNDER MVS -- BASIC PLANS

This section is separately available -

as UCLA Document UCNSW-2l3.

II-

Section 1

PERSPECTIVE

In September, 1980, the UCLA Office of Academic Computing converted its
IBM 3033 computing complex from the IBM operating system known as MVT
("Multiprogramming with a Variable number of Tasks") to that known as
MVS ("Multiple Virtual Spaces"). While MVS is generally considered to
be upward compatible with MVT, this is true only for programs which are
entirely lacking in "system-intrusive" features.

For systems like the UCLA NSW system, this conversion presented
significant incompatibilities and significant opportunities, due to
considerations like these:

1. This conversion represented a change from real-memory-oriented
operation to virtual-memory-oriented operation. This change
offerred irresistable opportunities to improve some of the NSW
code. It also represented a change from a system in which code
in one "job" was able to reference data in another job if it was
able to gain certain system privileges, to one in which
individual address spaces are not only separated by rigid
protection boundaries, but are logically unreachable from each
other. For systems like NSW, which is implemented at UCLA as
multiple jobs with much intercommunication, this caused serious
problems.

2. Many of the operating-system interfaces required to implement a
*" system like NSW were not present in MVT, and were added by UCLA
" systems programmers as system extensions. The MVS system,
* designed a decade later, includes most of these interfaces, but

not, of course, in a form compatible with the UCLA extensions.
Therefore, large sections of code designed around such interfaces
were made obsolete.

3. The MVS system is, in general, better able to accomodate
subsystems of the type of the NSW system than was MVT. It is
possible to implement such systems in a way that is more robust
and more maintainable, using the extended features of the new
operating system. However, upgrading the quality of existing
systems requires at least some reprogramming.

-2-

", ",'. .".' ",' , - . .. , - ...-.... v -. ..-

4. The NSW system conversion lay on a critical path behind the
conversion of the UCLA inter-job communication mechanism, the
EXCHANGE (reference 2). Delivery of that component to the NSW
project was delayed for almost a year, due to problems arising in
the MVS systems area. During that time the UCLA NSW implemen-
tation was not operational, and a number of architectural changes
accumulated as a part of normal NSW evolution. Implementation of
these changes thus became associated with the system conversion
by default.

The material that follows represents an analysis of the problem of
conversion of the NSW system from MVT to MVS, a statement of alternative
design changes, and a basic plan for the actual conversion.

.9'

.9'

U.)

II

k'i

-3-

.%

Section 2

THE NEW ENVIRONMENT

This section expands on the most important changes that will influence
the redesign of NSW programs for the MVS environment.

2.1 VIRTUAL MEMORY -- DESIGN OPPORTUNITIES

Code written in PL/I to run under MVT/TSO tends to be organized
primarily to conserve space and/or facilitate overlay. In some cases,
this goal has actually directed software architecture. A goal of an MVS
conversion project should be to identify and correct places where
storage constraints have resulted in poorly designed programs. Of
course, virtual memory is not a panacea for storage problems, and such
changes should be tempered by the goal of keeping working sets small.

2.2 INTER-ADDRESS-SPACE COMMUNICATIONS

Inter-process communications, which were easily implemented under MVT,
are more complex under MVS. Where communication is across job
boundaries, it will now cross MVS address-space boundaries. This
requires a different technique, such as intermediate buffering in a
common storage area.

IBM supplies a program product, ACF/VTAM (reference 5), that accom-
plishes this function using intermediate buffering. However, the
program interface to ACF/VTAM is complex, and good program design
practices suggest that, to implement a simple inter-process comminica-
tions protocol, it should be front-ended by a package with a simpler
interface.

The Johns Hopkins Shared Variable Manager (SVM) is another product that
accomplishes inter-process communications through intermediate buffering
(reference 18, 19). Its interface is simpler, but it will still benefit
from a small front-end interface that offers primitives organized in
terms of the problem at hand. SVM is deficient in that the upper limits
on the traffic that it will handle are unreasonably small for a
general-purpose communications mechanism.

-4-

% % %-

I.

ACF/VTAM has been demonstrated to be insufficiently robust to be used as
an inter-process communications vehicle at this time. However, it
remains the product of choice for the long run, due to its integration
with the operating system, automatic maintenance by IBM, and lack of the
limitations of SVM. SVM is the immediate choice for a temporary
package.

In converting from an implementation that used the UCLA EXHANGE package
(reference 2) under MVT, it will be wise to reduce or eliminate program
dependence on features that are not fundamental to the general problem 4
of inter-process communication. In the case of EXCHANGE, such features
include:

1. Event signalling by software interrupt (the MVS "IRB" -- see £

reference 7).

2. Stuctured communications paths (EXCHANGE offers multiple
"channels" per "window").

3. Discontiguous data areas (EXCHANGE provides scatter-read and
gather-write).

4. Inessential status inquiries (EXCHANGE supports certain status
inquiries by either process about the other).

5. A specific mode of process addressing (EXCHANGE uses a set of
four 8-character "job" and "tag" names).

2.3 BATCH JOB SCHEDULING

The scheduling, monitoring, and retrieving of batch jobs under MVT used
interfaces to the operating system's job queue that were developed as
local system extensions. It is true that IBM provided some retrofitted
capabilities of this sort to support their TSO time-sharing system, but
these retrofits were too little and too late to be of great use at UCLA.

Under MVS, however, general purpose interfaces exist, and should be
used. UCLA has implemented a Virtual Remote Batch Terminal, or VRBT
(reference 12), using the IBM ACF/VTAM program product (reference 5).
This virtual terminal allows any problem program in the system to
connect to the MVS operating system as if it were a remote batch
terminal.

The VRBT can and should be used to interface with the MVS batch job
scheduling system. However, its interface is unique, and existing
programs cannot be expected to use it without major changes.

-5

2.4 INTERACTIVE JOB SCHEDULING

The logging-on of a time-sharing "pseudo-user" under MVT used interfaces
to the operating system's telecommunications system that were developed
as local system extensions.

Under MVS, however, general purpose interfaces exist, and should be
used. UCLA has implemented a Virtual Line-oriented Terminal, or VLT
(reference 11), using the IBM ACF/VTAM product (reference 5). This
virtual terminal allows any problem program in the system to log onto
the TSO time-sharing system as if it were a teletypewriter.

The VLT can and should be used to create interactive jobs as slaves of
existing processes. However, its interface is unique, and existing
programs cannot be expected to use it without major changes.

Notice that the VLT is not intended as a vehicle for MSG communication
with NSW processes. Such communication requires a transparent binary
path, such as provided by the EXCHANGE.

2.5 THREADER COMMUTATOR

UCLA has implemented a simple commutator package named THREADER
(reference 13). This package allows the execution of multiple
independent threads of control in programs written in PL/I. Using
THREADER instead of PL/I multi-tasking simplifies the coding process due
to simpler handling of critical sections. It may also avoid some of the
overhead of true multi-tasking. It is useful in several circunstances:

1. When multiple instances of the same program are to be executed
concurrently.

2. When multiple unlike programs could be executed together to

advantage, as due to sharing some significant resource.

3. When a program is best designed as a set of co-routines.

-6-

2.6 NSW ARCHITECTURAL CHANGES

The NSW Architectural Control Contractor has proposed changes (reference
15) that allow local processes to execute in cooperation with each
other, and to use each others' services without the intervention of the
NSW Works Manager (reference 17) processes. These changes will be
facilitated by some basic reorganization of the UCLA NSW code. We will
include these reorganizations in our MVS implementation. Specific
changes are covered in subsequent sections.

2.7 RELAXATION OF THE TGET WAIT PROBLEM

Under MVT, an interactive job that was waiting for terminal input was
unavoidably and irrevocably blocked. This fact had significant impact
on the design of any program that was to perform terminal interaction
and other work concurrently. Under MVS, this restriction has been
largely eliminated. This will mean that desirable program designs that
had to be shelved under MVT can now be implemented, particularly in the
area of the NSW Foreman.

" 7 "

%- ?" -. 'r ,. ,,.,,," ..% ,, :- ,% . ,. j, '. , .. .,,. " % . . .,.-.- ,- , .,. 0

Section 3

CHANGES TO NSW PACKAGES

NSW functional specifications allow the implementor great lattitude in
choosing basic system structures. The UCLA implementation is quite
modular, and can undergo basic structural reorganizations without
serious effects on the bottom-level code.

This section ennumerates specific programming packages of the UCLA NSW
implementation, and applies the aspects of the new environment to each.
The most attractive options for conversion are presented.

In a final subsection, the options for the overall structure of the
entire NSW system are examined.

3.1 PL/MSG

The PL/MSG package (reference 14) is the UCLA implementation of the
process-to-MSG communications interface. All communication between an
NSW process at UCLA and another NSW process passes through this package.

Under MVT, PL/MSG used EXCHANGE (reference 2) as its inter-process
communication mechanism. Because WAITs are not permitted in PL/MSG
code, and because that code must perform processing both before and
after communication with EXCHANGE, not all such processing can occur 8
during the term of a CALL to PL/MSG. The implementation uses software
interrupt signalling (IRB signalling, see reference 7) as its mechanism
for regaining control in order to perform post-EXCHANGE processing. It
also makes use of the discontiguous data area features of EXCHANGE,
although those features were used as a matter of convenience, not
necessity.

Under MVS, programs using PL/MSG will be required to operate under
THREADER. PL/MSG processing can be done on the thread of the caller, or
on a thread dedicated to PL/MSG post-event processing. We will
eliminate dependence on software interrupts and discontiguous data
areas. j

I

" 8-

%

3.2 PL/PCP

PL/PCP (reference 10) is a subroutine package that defines and enforces
a Procedure-Call protocol upon the basic PL/MSG primitives. Like
PL/MSG, PL/PCP must perform processing at times other than those
corresponding to CALL's upon its primitive routines. Since PL/PCP is
written in PL/I, and since software interrupts are not generally
available to PL/I programs, we resorted to defining extra calls to the
PL/PCP package, and extra responsibilities upon the caller. The PL/PCP
interface is thus cumbersome and unaesthetic.

Under MVS, programs using PL/PCP will be required to operate under
THREADER. PL/PCP processing can be done on the thread of the caller, or
on a thread dedicated to PL/PCP post-event processing. We will
eliminate the unaesthetic parts of the PL/PCP interface.

3.3 MSG DIRECT CONNECTIONS

Under MVT, MSG direct connections (reference 16) were implemented as
EXCHANGE windows. Since they were used by PL/I programs, and since
EXCHANGE was a system service not callable in PL/I, an interface
package, PLOXI (reference 1), was used. PLOXI was a completely
general-purpose assembler-language interface between EXCHANGE and PL/I
programs.

Under MVS, the inter-process communication mechanism will not be a
system service, but a called routine. It will be called either directly
from PL/I code or through a minimal assembler interface specific to the
call. Since PLOXI was quite specific to the EXCHANGE, it will not be
converted to MVS.

3.4 THE FILE PACKAGE

FP/360 (reference 3) was the MVT implementation of the NSW File Package
process. Its lowest level is logically structured as a set of of
co-routines. Previously, these coroutines were dynamically selected and
bound together. Each such selectable routine was contorted into the
form necessary to make it interface directly with the others. Under
MVS, we will execute each such co-routine as a thread. There will be no
need to invert the algorithms of the routines, so their logic can be
simplified gradually as a part of routine module evolution. The
resulting difference in the order of decision making will eliminate the
need for dynamic selection and binding of the modules, simplifying the
code and facilitating future maintenance. Because the FP/360 code is
structured and modularized, these changes will not be massive.

%L -9

.4

There is a need to execute multiple File Packages concurrently.
Previously, we have done this by logging on multiple TSO "pseudo-users"
and invoking one instance of the File Package for each. We will now use
THREADER to execute multiple instances of the same File Package code
under one TSO logon. This will require only insignificant changes to
the File Package code itself.

In summary, the File Package will become a single job, which will
materialize as many MSG processes as are needed, or as are allowed by an
initialization parameter. Since idle MSG processes will not represent
significant allocated resources under this model, we can increase the
number of File Package instances held at the ready considerably. The
File Package job can be either a batch job or a TSO session.

3.5 THE FOREMAN

FM/360 (reference 9) was the MVT implementation of the NSW interactive
Foreman process. It has always been a subset implementation due to the
restrictions of the MVT environment. Under MVS, it can grow into a full
implementation, although none of this growth need lie on the critical
path to bringing NSW back up under MVS.

There is a need to support a "local name dictionary" (LND) to preserve
the status of all interrupted tools across system or Foreman crashes.
The LND can be shared by all active Foreman Processes, or there can be
one for each Foreman instance. In either case, on system restart, a
Foreman instance must report the status of all interrupted tools to the
Works Manager. These needs could be met by operating multiple
concurrent Foreman instances in a single address space, as dynamically
created threads under THREADER, with a single LND-manager thread shared
by all instances. Such a super-Foreman would be initiated at system
restart, and at that time the LND-manager could perform the necessary
Works-Manager communication.

There is a need to protect each Foreman from the tool which it super-
vises, since these tools are frequently undebugged. This need could be
met by operating the Foreman and its tool in separate address spaces,
communicating across the "thin-wire" communications path provided by an
instance of the VLT. This design becomes more feasible when combined
with the notion of housing all Foreman instances in a common job, as
explained above.

There is a need for a Foreman process to select the workspace under
which it will run its tool after the Foreman itself is already
executing. This implies that the Foreman process is not itself "under"
that workspace. Since we have always implemented NSW workspaces as TSO
logon directories corresponding to TSO userids, this need also suggests
that the Foreman should select a userid, log that userid onto TSO, and
then invoke its tool program under that TSO session. The pool of
available TSO userids could be allocated by the same thread that manages
the LND.

10

V..............

,N

There is a need to execute File Package processes directly from the
Foreman. This need can be met merely by sending a newly defined
procedure call from the Foreman to the File Package, or by merely
executing the File Package code directly within the Foreman address
space, using THREADER.

In summary, the Foreman will become a single job, which will materialize
as many MSG processes as are needed, or as are allowed by an initiali-
zation parameter. Since idle MSG processes will not represent
significant allocated resources in this model, we can increase the
number of Foreman instances held at the ready considerably. The Foreman
job can be either a batch job or a TSO session.

9.

3.6 THE BATCH JOB PACKAGE

BJP/360 (reference 8) was the MVT implementation of the NSW Batch Job
Package. The only part of its code that can be transferred to the MVS
implementation is that concerned with PL/PCP transaction processing.
The rest is concerned with interfaces to the MVT operating system which
no longer exist.

BJP/370, the MVS implementation, will be designed around THREADER, the
VRBT, and the UCLA Encapsulator Command Interpretor, or ECI (reference
4). The main thread of control will consist of the existing PL/PCP
interface, a local job table manager, and code to create a VRBT-manager
thread.

The VRBT-manager thread will create a VRBT and connect it to the MVS Job
Entry Subsystem, JES-2. It will then create and coordinate threads to
manage three virtual terminal devices: the card reader, the printer,
and the operator's console.

The card-reader-manager thread will perform job submission. It will
read SYSIN data sets that have been created by the Works Manager
Operator (WMO) process (reference 8), pass them through the ECI, and
pass the resulting jobstream into the card reader of the VRBT. Through
the Tool Descriptor in the NSW Works Manager data base, the WMO will be
configured to send SYSIN data in the form of ECI statements setting the
various options that the user has entered. Through the tool-dependent
ECI programs stored at UCLA, the ECI will be parameterized to expand
these statements into MVS Job Control Language (JCL) statements
(reference 6).

The printer-manager thread will accept job outputs from JES-2, spool
them into SYSOUT data sets in the appropriate tool workspace, and
generate notifications when the data is ready.

The console-manager thread will query or instruct JES-2 as needed by any
other thread, including:

-11 -

1. Query the status of a job, in response to a QUERY from the WMO.

2. Query the local name assigned the job in the card reader.

3. Query the local name of the job now on the printer.

4. Cancel a job.

5. Cancel a SYSOUT stream.

All these threads will request each others' services through a simple
set of work-element queues.

At UCLA, there will always be only one BJP task per NSW system. It can
be either a batch job or a TSO session. It will be initialized at
system restart time. It will maintain a table of local batch jobs which
is backed up on disk, and which is used to re-establish synchronism with
WHO after system restart. It will use the ECI. In other words, it
shares a great many attributes with the multiple-Foreman design
mentioned earlier. There may be good reasons to combine the BJP and the
Foreman into one job; however, we will not plan to do this at first.

3.7 OVERALL DESIGN STRATEGY

Combining all the notions developed in the previous sections, we see a
design in which each supported generic process class is represented by a
single job, either a batch job or a TSO session. Except for the BJP,
which does not require multiple instances, the code in each job forks
into as many identical MSG processes as specified by an initialization
parameter, using THREADER.

Using this design, the process-spawning mechanisms of MSG Central
(reference 16) will go almost unused. The main NSW jobs will be created
by startup commands, rather than in response to a generic message.

There is no inherent reason why these three jobs cannot be combined into
a single job. There are two areas of concern with that design. First,
THREADER does not now support fault isolation to one thread, so that a
program interrupt in one thread will bring down all. However, the
additional THREADER code to support this will have to be written
eventually. There is also the possibility that so many activities in
one address space may result in a working set so large as to reduce NSW
responsiveness. We will need experimentation to determine this.

The inherent flexibility of the NSW specifications and of the THREADER
system allow decisions like these to be made very late in the design
process. We will initially plan to use three TSO jobs; however, we can
combine jobs or go to batch almost at will.

12

- 12 -

=.9

4,'

Figure 1: Basic NSW structure under MVT.

* * 2

* ARPANET CONTROL PROGRAM JOB *

* Threads of control managed by the ARPA commutator:

* *
* *----------------------**'

* [M S G Central [

** * F

V :I

TSO process creation through a system modification "

II I I "-,
V II V VI"

A*** I **

* BJP * * Foreman * * Foreman * <&"

* Job * * and **...* and *
* * Tool(l)* *Tool(n)*
* * * Job * * Job *

V V "I

* File * * File * MSG communication "

* Package *. * Package * "
* Job(l) * * Job(n) * to all processes
* * * * through EXCHANGE.

Communication through
system modifications

V

[MVT Batch
I Job Queue [I I""

- 13-

Figure 2: Multi-TSO-job NSW structure under MVS.

* ARPANET CONTROL PROGRAM JOB *

* Threads of control managed by the ARPA commutator: *

* *--------------------* *
* I *

* I S G Central . *

'V * *----------------------** I*** * f

.. I I "
TSO process creation through the VLT MSG communication

I" I I through ACF/VTAMV IV V

* * FOREMAN JOB * "
* BJP * * *-* *--------* *--------* * "

* JOB *j I I I f*

* *1 *ILND I I FM(n)I*<-"
* * I * GI....I I *

* * * I I I I I* "

g~.IV "
I AAA;,AAA.AA I A;; A&& I

* FILE PACKAGE JOB * "

1*1 I I *1 "I
* IFP(1) I IFP(n)I* <

I II I

RJE Signon through TSO process creation
the VRBT through the VLT

V V V

*JES-2 * * Tool * *Tool *
* Job * * (1) *. * (n) *
* * * Job * * Job *

~8% - 14 -

414

S%

ws t n n,fr qu qrwun -sipn trw i-w--v IJw W' WWrS W- Yr 5, ~ ~-

oil

Figure 3: One-batch-job NSW structure under MVS.

* ARPANET CONTROL PROGRAM JOB*

* Threads of -------------------- *

controlII*
* managed by ...I M SG Central I.
the ARPA

* commutator: *-------------------*

TSO process creation through the VLT
V MSG communication

through ACF/VTAN .

* "SUBMITTER" JOB *

Batch job creation through the TSO SUBMIT command

* PRIMARY NSW BATCH JOB*

* Threads of control managed by THREADER:*

*1 BJP II LND I Foremani Foremani *'

*1 l Manageri (1) (n) *

* E- * Too * Too
Jo * * (n)

15-

REFERENCES

1 Braden, PLOXI -- A PL/I Interface to Exchange. Document UCNSW-407,
Office of Academic Computing, UCLA, November 15, 1980.

2 Braden and Feigin, Programmer's Guide to the Exchange. Document TR-5,
Office of Academic Computing, UCLA, March, 1972.

3 Braden and Ludlam, FP/360 - The NSW MVT File Package. Document
UCNSW-204, Office of Academic Computing, UCLA, November 20, 1980.

4 De La Roca and Ludlam, The UCLA Encapsulator Command Interpretor
System. Document UCNSW-206, Office of Academic Computing, UCLA,
April 23, 1980.

5 IBM Corporation, Advanced Communication Function for VTAM:
Programming. IBM Document SC27-0449, October, 1979.

6 IBM Corporation, OS/VS2 MVS JCL. IBM Document GC28-0692, May, 1979.

7 IBM Corporation, OS/VS2 System Programming Library: Supervisor. IBM
Document GC28-0628, August, 1979.

8 Ludlam, BJP/360 - The NSW MVT Batch Job Package. Document UCNSW-207,
Office of Academic Computing, UCLA, December 1, 1980.

9 Ludlam, FM/360 - The NSW MVT Foreman. Document UCNSW-205, Office of
Academic Computing, UCLA, December 1, 1980.

10 Ludlam, PL/PCP - An NSW Procedure Call Protocol Package for PL/I.
Document UCNSW-402, Office of Academic Computing, UCLA, November
15, 1979.

11 Ludlam, Programmers' Guide to the UCLA Virtual Line Terminal Support
Package. Document TR-26, Office of Academic Computing, UCLA,
February 1, 1981.

- 16 -

12 Ludlam, Programmers' Guide to the UCLA Virtual Remote Batch Terminal
Support Package. Document TR-25, Office of Academic Computing,
UCLA, February 1, 1981.

13 Ludlam, THREADER - A Commutator for PL/I Co-routines. Document
UCNSW-409, Office of Academic Computing, UCLA, June 1, 1981.

14 Ludlam and Rivas, PL/MSG - An MSG Interface for PL/I. Document
UCNSW-401, Office of Academic Computing, UCLA, November 15, 1980.

15 Massachusetts Computer Associates, NSW Exec Enhancements II. MCA
Document P-3-019, November 26, 1980.

16 Rivas, Ludlam, and Braden, An Implementation of the MSG Interprocess
Communication Protocol. Document TR-12, Office of Academic
Computing, UCLA, May, 1977.

17 Schaffner and Sluizer, Works Manager Subsystem Specifications.
Document CADD-7906-1117, Massachusetts Computer Associates, Inc.,
June 1, 1979.

18 ISI staff, SVM User's Guide. Document ISI10002, Interprocess
Systems, Incorporated, Atlanta, Georgia, June, 1980. .

19 IBM Corporation, VS APL for CMS: Writing Auxiliary Processors. IBM
Document SH20-9068.

f*o

17

% IV %r % rr ro

% %

PART I1

THREADER -- A COMMUTATOR FOR PL/I COROUTINES

This section is separately available
as UCLA Document UCNSW-409.

V.

V.g

*1,

9

A

4

Section 1

OVERVIEW OF THREADER

THREADER is a subroutine package that enables multi-threaded execution
of PL/I code, without the overhead and coding difficulties associated
with multi-tasking. There are two main applications for this
capability: co-routine design of application programs, and multiple
simultaneous executions of a single application program. Combinations
of these applications are also useful.

THREADER is designed to run co-operative, debugged programs. There is
little error checking, and little attention given to fault isolation to
a single thread, although such features could be added in future
versions.

THREADER is not intended to be a full-fledged program monitor, nor to
define a specific set of inter-thread communications protocols. It is a
foundation on which such protocols may be built.

19

"S..

le

, 4Fa _r:j . ,_

1.1 APPLICATIONS OF THE THREADER PACKAGE

Using THREADER, an application program can be designed as a set of
cooperative co-routines, each performing a well defined function using a
simple algorithm, and each communicating its needs and outputs to the
others through rendesvous points that are essentially independent of the
algorithmic structure. It is thus not necessary to invert an algorithm
to, for instance, give it a single input point that corresponds to its
procedural entry point. This capability has the potential of reducing
debugging time, since an algorithm need only be tailored to the
particularities of the data attributes of an application, not to the

interactions of the various other algorithms with which it must
communicate and coexist. Under these circumstances, it becomes more
feasible to copy code from application to application with relatively
minor changes.

THREADER differs from a multi-tasking environment in the degree of
asyncronous operation. A given routine can be interrupted by any of its
co-routines only at a point where it voluntarily relinquishes control
through an external procedure call. Of course, all routines remain
interruptible by truly asynchronous activities outside THREADER's realm
of control.

This feature is useful in designing critical-section code such as that
needed for inter-thread communications. In a multitasking environment,
critical sections must be protected by some interlocking mechanism that
prevents simultaneous accesses by concurrent threads. Such mechanisms
are painful to program and irritating to use. Furthezmore, it is
difficult to demonstrate that every critical section is properly
protected, since virtually identical program executions can produce
drastically different patterns of interlock activity. Under THREADER,
it is only necessary to ensure that critical sections are contained
within a code segment that is not interrupted by an external procedure
call.

As a further illustration of the difference between THREADER and
multitasking, consider multiple concurrent execution of the same
application program. Under multitasking, such a program must have all
the properties generally grouped under the name "reentrant". Under
THREADER, it need only have those properties collectively called
"recursive".

THREADER is designed to run PL/I programs compiled by the IBM Optimizing
Compiler (Reference 1, 2), and this documentation uses PL/I terminology;
however, some use of other languages is permitted. In general, THREADER
facilities may be called from any language capable of passing parameters
in a compatible fashion. However, when a new thread of control is
started by THREADER, a PL/I execution environment is created for it.

In general, multiple-thread design will use more virtual storage,
because of the multiple incurrences of the initial space overhead of
PL/I running-system dynamic areas such as the Task Communications Area
(TCA). However, for applications where multiple independent programs

-20

are combined under THREADER, there will be a space savings, since the
same dynamic storage requirements will exist, but common copies of the
modules from the extensive PL/I subroutine library will be used.

In general, we believe the processing overhead of using THREADER to be
of similar magnitude to the savings realized by not coding inter-al-
gorithm interfaces directly.

' :%

21v

%*

me: w . Y e ;

1.2 HOW THREADER RELATES TO THE PROBLEM PROGRAM

A THREADER application program consists of a main thread and any number
of subthreads, which may or may not be further organized into subtree
structures. A single application program is defined by the use of a
single copy of the THREADER code. It is of necessity contained within
one task, since the THREADER code is not itself reentrant. In other
words, two applications cannot share one copy of THREADER.

THREADER is a subroutine package, not a main program. It creates
subthreads, but it does not create the main thread from which it is
called for the first time. So changing an existing program to use
THREADER does not involve changing the way in which the program receives
initial control.

THREADER is a substitute for PL/I mutli-tasking, where only one OS task
is used, and the intertask communication facilities of PL/I are replaced
by THREADER entry points. There are several important differences:

1. The multitasking versions of the PL/I library routines are not
used.

2. Under multitasking, external procedures are usually declared
REENTRANT. Under THREADER, they are usually declared RECURSIVE.
There is a TASK option of the PL/I PROCEDURE statement; however,

the current implementation does not require it for either
multitasking or THREADER use.

3. Under multitasking, each PL/I task has associated with it a PL/I
execution-time environment and an OS task. Under THREADER, there
are multiple PL/I environments, but only one OS task. Therefore,
language facilities associated with the PL/I environment exist
multiply for threads. OS facilities associated with an OS task
exist singly for all threads.

4. For example, CONTROLLED EXTERNAL storage is not shared among
threads. PL/I files are addressed the same as CONTROLLED
storage, and are not shared among threads. STATIC storage is
shared among threads.

5. The STOP statement should terminate a thread, although at this
writing this has not been tested. The effect of the EXIT
statement is not now known. It should be avoided.

6. The OS facilities that are shared among threads include the
system timer. For a PL/I program, the timer is directly
available only through the DELAY statement. This statement will

- 22 -

eld

NdK
.k

%, NOM

delay all threads equally. In practice, OS interval timing
services are often used from PL/I via Assembler subroutines.
Such usage by more than one thread will cause unexpected
behavior. Where this is a problem, the solution is to write a
timer-management routine that executes as a thread. Such a
routine is not provided as an integral part of threader, in
keeping with the philosophy that THREADER is only a foundation
for the building of more complex monitor systems.

7. Another system facility that is shared among threads is error
control, as provided through the STAE and SPIE services. At this
writing, THREADER forces all its subthreads to use the PL/I
NOSTAE and NOSPIE options, and it depends upon its caller having
done the same. This means that some PL/I error handling is
disabled under THREADER. It is recognized that this is a serious
omission, and we plan to re-enable these features in a later
version.

8. The TIOT is shared, so if files are used multiply, they must
usually have unique DDNAMEs (PL/I TITLE clauses). Files written
simultaneously to the same DDNAME usually cause problems;
however, if the DDNAME is allocated to a "shareable device," the
data will be roughly interleaved. "Shareable devices" include
the TSO terminal, real printers and punches, and JES2 SYSOUT
files. The use of shared input files is probably not feasible.

In general, programs using THREADER should be declared RECURSIVE. The
load module containing THREADER is neither reentrant nor read-only.
THREADER assumes that it is the dominant control mechanism, and it uses
static storage for its control data.

-23

1.3 INTER-THREAD COMMUNICATION

Communication between threads is rooted in the list of parameters passed
at thread-initiation time. Once two threads have established a common
storage area they synchronize each other on a gross level through ECB's
in the shared storage, and THREADER provides THWAIT and THPOST entries
for this purpose.

The user of THREADER is assumed to be familiar with OS ECB management
(reference 3), and with the essentials of PL/I subroutine communication
(Reference 2).

THREADER ECB's are not PL/I EVENT variables, although a method is
provided for interfacing with such variables if the PL/I program needs
to do so. THREADER ECB's are just like OS ECB's, except that there are
two types: external and internal.

1. An external ECB is an OS ECB. It is used to communicate between
a thread and some external process. When THREADER finds all its
threads blocked, its current set of external ECB's will be used
in an OS WAIT SVC call. The handling of external ECB's is
potentially completely asynchronous. If thread code is to post
such an ECB, it must be done using a valid OS POST mechanism.
THPOST is such a mechanism.

2. An internal ECB is just like an external one except that it is
never used for any purpose except communication between two
threads. Because such threads do not execute truly asynchro-
nously, an internal ECD can be posted just by storing a value
into it. Internal ECB's are never passed to OS in a WAIT SVC
call. Therefore, it is permitted that more than one thread may
be waiting on an internal ECB at a time. Such usage requires
careful coordination of the threads themselves, but it is not
considered unusual by THREADER.

While THREADER could be used to implement a system where all waits are
strictly controlled, this is not a requirement of THREADER itself. Any
thread is free to issue its own WAITs wherever it wishes. Of course,
during such WAITs, no other thread can run.

Normal thread termination is by a normal return from the external
procedure which was entered as the thread's main program.

The main program of the main thread, usually the "OPTIONS (MAIN)"
proocedure of the load module, receives control BEFORE THREADER, and so
is "started" and "terminated" differently from other threads.

THREADER keeps a tree of "Thread Control Blocks" (THB's) that define the
current set of threads and their relationships. The address of such a
block may be considered a "thread handle", and may be used to name the
thread when communicating with THREADER. The handle of the current
thread is always available in STATIC EXTERNAL POINTER variable MYTHB.

-24-

i %, k¢-, k %.%""A " t''..'.. ' ' .''."._ ""_ ., , .'... '" .' "-' " -" -'. ". ""
"°

"- " - "- *-" ,. % ".'-' -

When any thread starts a subthread, the new handle will be returned in a
parameter cell.

For many programs, thread handles are irrelevant, and can be ignored;
however, use of such a handle in the THWAIT call can improve efficiency.

Parameters are passed to the main procedure of a subthread via the usual
PL/I CALL mechanism. However, the call is to routine THSTART, which
relays the parameters to the indicated routine. If THSTART is used in
the same program to start more than one kind of subthread, it may be
difficult to declare relayed parameters in any way except "k". When
this is done, the caller will have to ensure that the arguments passed
match the types expected, since automatic type conversion is not
possible.

THSTART must be declared "OPTIONS (ASSEMBLER)". This means that normal
PL/I data locator/descriptors are not used, and consequently, data that
would normally require a locator/descriptor cannot be received directly
by the called program. Such data include:

1. Character string data.

2. Bit string data.

3. Arrays of any kind of data.

4. Structures.

Of course, such data can always be passed indirectly by using POINTER
parameters and passing arguments of the form "ADDR(...)", or by using
based variables and ADDR in the called routine.

The parent thread will not continue execution until the subthread has
been initiated and has returned control voluntarily to THREADER. When

it does continue execution, the THSTART parameter list will usually be
lost, since PL/I builds such lists in scratch storage. During this
period, it is the responsibility of the subthread to capture all of its
argument values that could possibly be passed in volatile storage.

-25 -

Section 2

THREADER SUBROUTINE CALLS

2.1 THSTART -- STARTING A SUBTHREAD

THSTART is called by any thread to establish a subthread, to start it
running, and to pass it parameters.

DECLARE THSTART ENTRY (CHAR(8), ENTRY,
FIXED BIN(31), POINTER,
FIXED BIN(31), *, *,..

OPTIONS (ASSEMBLER, INTER);
CALL THSTART (name, entrypoint, isasize,

handle, termecb,
parml, parm2, ...);

Where:

1. "name" is an 8-character name to be assigned to the subthread.

2. "entrypoint" is an ENTRY constant or variable identifying a PL/I
EXTERNAL procedure or entry, which need not be declared "OPTIONS
(MAIN)." This will be the main procedure of the subthread. It
is also possible to declare this parameter POINTER, when that
facilitates the calling program's usage.

3. "isasize" is as described in the PL/I programmer's guide
(reference 2). The absolute minimum here seems to be about 2200.
Most programs will want much more.

4. "handle" is a POINTER variable which will receive the subthread
handle.

5. "termecb" is a fullword to serve as a subthread termination
notification. THSTART will clear the post bit of this word, and
will then "post" it when the subthread has terminated. This
might be as early as before control returns from the THSTART
call. The post code will be the contents of register 15 on exit.
When this ECB is posted, the subthread handle becomes invalid.

6. "parml", "parm2", etc. stand for the parameters to be passed to
the subthread entry point. There can be any number, including
zero, and their types can be whatever the called routine will
expect. See the restrictions on this list under "IN7ER-THREAD
COMMUNICATION".

- 26 -

-- - U~WM UWWVW U WVWrVW WVWW WVW %"... ' J W:-; 19. INN; -'i ; MV1 6p W%:. -i - - - - W-. -

Parameters may be omitted from the right end of the list, when this is
appropriate, but the isasize and everything to the left of it are
required. The termination ecb and/or thread handle parameters may be
designated as omitted even when there are specified parameters following
them. This is done by passing a parameter ADDRESS (not VALUE) of ZERO
(not NULL). This is not easily accomplished in PL/I, but it can be done
by this artifice:

DECLARE ZERO FIXED BINARY (31) STATIC INITIAL (0),
ZEROPTR POINTER BASED (ADDR (ZERO)),
NULLHANDLE POINTER BASED (ZEROPTR),
NULLECB FIXEC BINARY (31) BASED (ZEROPTR);

CALL THSTART C ... NULLHANDLE, NULLECB, ...);

When there is a termination ECB, the new thread will be a subthread of
the calling thread. Note that posting of the termination ECB is always
suppressed if the parent thread has already terminated. When there is
not a termination ECB, the new thread will be a subthread of the main
thread.

When there is no handle variable, the subthread handle is not returned
to the caller, but there are no other side effects.

eft

e-.

-I

- 27 -

W"
' ' .; :- 3 % -% e. % A- .. --. -L ... A. .4. V- .L . ." -"L. • • ' - ' ' ' '"

2.2 THWAIT/THWAITL -- LETTING OTHER THREADS RUN

THWAIT and THWAITL cause the calling thread to be blocked until some
event occurs. In the meantime, other threads will execute. THWAITL
differs from THWAIT only in its syntax. It is provided to support
situations where the set of ECB's is too dynamic to fit the simple
syntax of THWAIT.

The caller may recommend a thread to be given control if it wishes. If
it does so, and if that thread is indeed ready, it will be the next
thread to run. If no recommendation is made, or if the recommeded
thread is not ready, THREADER will choose a thread to run, using a
strictly round-robin technique.

When a ready thread is reccommended, thread-switching overhead is of the
same order as subroutine calling. Otherwise, thread-switching overhead
is unpredictable, and depends on THREADER load. Hence it is important
to make a valid recommendation whenever possible.

The caller may specify any number (up to 64) of events to wait for.
When any one is posted, the caller is again eligible to receive control.
If any specified event is already posted, the caller is eligible to
receive control again at once; however, this will happen only if there
is no other ready thread to be run. It is legitimate to pass no ECBs.
This is equivalent to passing a single pre-posted ECB.

It is up to the caller to clear all ECBs before they are associated with
an event. THREADER cannot clear ECBs, since it is legitimate for them
to be posted already.

The caller is also responsible for distinguishing between external and
internal ECBs. THREADER has no other way of knowing this, and if an
external ECB is mistakenly treated as internal, the entire system may
lock up.

DECLARE THWAIT ENTRY (POINTER, FIXED BIN(15),
FIXED BIN(31), FIXED BIN(31), ..

OPTIONS (ASSEMBLER, INTER);
CALL THWAIT (recommendation, externalcount,

ecbl, ecb2, ...);

DECLARE THWAITL ENTRY (POINTER, FIXED BIN(15),
FIXED BIN(15), (*) POINTER(31))
OPTIONS (ASSEMBLER, INTER);

CALL THWAITL (recommendation, ecbcount,
externalcount, ecblist);

Where:

1. "recommendation is the handle of a thread being recommended as
the next one to receive control, or is NULL if no recommendation
is being made. This parameter may not be ommitted.

- 28-

p0

V

2. "externalcount" is the number of external ECBs in the following
list. These must be the first ones named. The remainder of
those named will be treated as internal ECBs.

3. "ecbl", "ecb2", etc. are the ECBs representing the events being
waited for. There may be as few as zero or as many as 64 of
these. If there are zero, the "externalcount" can also be
omitted.

4. "ecbcount" is the number of entries in "ecblist".

5. "ecblist" is a vector of "ecbcount" ecb addresses. The first V
externalcount" of them are external, and the remainder are
internal. There is no form of list terminator other than these
separately-stated counts.

6. If no ECBs are being passed to T}WAIT, then only the recommen-
dation" parameter need appear.

2.

ft,

"f"t

% - % , . .+ - ,% ..' , ' . - ..' . ,+ , ' .+.. ++ . ..' - . - . ..- . +- • • . + .- . , .. , _, . .' .' -. - " - + - - • • . . j .,.- - . • . .",. - ,..',

'.e ,". '+ " .," " + ., .+. ,- .. . +- .,- ,* . ,- - . "" "" ," -" " - "" "" " "' " - " " "" "" "-" +'-" "-' "" " - " " --- " ",t

4

4O

2.3 THPOST -- MARKING EVENTS COMPLETE

The THPOST routine is provided only as a programming convenience. Any
valid interface to OS POST can be used to mark external events complete.
Internal ECBs can also be POSTed; however, it is just as proper (and
considerably faster) to mark them complete with an assignment statement.
For efficiency, THPOST uses "fast post" (the CS instruction) when
possible, and the OS POST SVC call otherwise.

DECLARE THPOST ENTRY (FIXED BIN(31),
FIXED BIN(31))

OPTIONS (ASSEMBLER, INTER);
CALL THPOST (ecb, code);

Where:

1. "ecb" is the ECB to be posted.

2. "code" is the post code. Only the lower 30 bits are used, since
the top two bits of an ECB are used for event status. This
parameter may be omitted, in which case zero will be used.

-30 -

N3

Section 3

OTHER FACILITIES

3.1 MYTHB -- THE CURRENT THREAD HANDLE

The MYTHB datum is the only way a thread normally knows its own handle.
It always contains the handle of the currently executing thread. You
may use it, but you may not change it.

DECLARE MYTHB STATIC EXTERNAL POINTER;

In fact, MYTHB is the name of the THREADER control section, and it can
be used to reference other data of interest by a declaration of the
form:

DECLARE 1 MYTHB STATIC EXTERNAL,
2 THBADDRESS POINTER,
2 PLIOPTIONS,
3 (REPORT, NOREPORT, SPIE, NOSPIE,

STAE, NOSTAE, COUNT, NOCOUNT,
FLOW, NOFLOW, FILL (22)) BIT(l),

2 MODIFIERS,
3 (DOPURGE, TESTING, PRINTNEW,

FILL (29)) BIT(l);

The PLIOPTIONS bits have the meanings of the corresponding options of
the EXEC card (reference 2). Just one of each pair must be set to 1.
They are applied when a new thread is started. You can set them at
will; however, THREADER will force NOSPIE and NOSTAE when a new thread
is started.

The MODIFIERS are for you to set. They have these meanings:

1. DOPURGE can be set to cause THREADER to terminate and purge all
subthreads of a terminating thread. At this writing this feature
is untested.

2. TESTING can be set to cause THREADER to TPUT the name and address
of every newly created or destroyed THB, and the name of every
THB that is dispatched.

-31- 0.

3. PRINTNEW can be set to cause THREADER to TPUT the name and
address of every newly created or destroyed THB.

As in any case where a STATIC EXTERNAL datum is declared in a less than
complete form, declarations like these should not be allowed to supply
the actual datum when the program is linkage-edited. To ensure this it
is only necessary to include THREADER in the linkage-editor input before
the program in which the declaration occurs.

- 32 -

* >§I>2.

a.

3.2 "PROCESS" -- PL/MSG SUPPORT -.

THREADER is expected to be used with the PL/MSG subroutine package
(reference 4). In its present form, that package uses a STATIC EXTERNAL
POINTER datum named PROCESS to identify the current MSG process.
THREADER includes a data ENTRY named PROCESS, which it will maintain
across thread swaps. Thus PL/MSG need not be made reentrant to use
THREADER.

Programs that do not use PL/MSG need not be concerned with THREADER's
support for the package. It is transparent to such programs, and it
does not add measurable overhead.

If PL/MSG is being used, it is necessary to ensure that the copy of
PROCESS that is included in a load module is the one provided by
THREADER, and not one from another object module. To ensure this, it is
only necessary to include THREADER in the linkage-editor input before
any programs in which PROCESS is declared.

"I.

33

% % . .= % - , -. . - % ,,, ,. - -. % - .- , , ,. -. , , , . . % ,. -. * % % % % % % % . % =, - -.. .

3.3 MANAGING ECB'S IN PL/I

THREADER ECB's are not normal PL/I data, and managing them in PL/I can
be a problem. The following techniques can be used:

DECLARE POSTED FIXED BIN (31) INIT ((2**30));

1. To clear an ECB:

ecb = 0;

2. To "post" an internal ECB:

ecb = POSTED;

3. To test an ECB for completion:

IF ecb >= POSTED
THEN action for posted event;
ELSE action for pending event;

4. To test a posted ECB for a zero postcode:

IF ecb = POSTED
THEN action for zero postcode;
ELSE action for non-zero postcode;

5. To extract the postcode from a posted ECB:

code = ecb -POSTED;

- 34

% %.

,.':

3.4 ECBADDR -- USING PL/I EVENTS

If a thread program must use a PL/I EVENT variable, it can use the
(untested) ECBADDR function to extract the corresponding ECB address for
passing to THREADER. For example:

DECLARE ECBADDR ENTRY (EVENT) RETURNS (POINTER),
ECBWORD FIXED BIN(31) BASED;

CALL THWAIT (...,
ECBADDR(EVENTNAME)->ECBWORD, ...);

ECBADDR is intended for use with ACTIVE L/O events. It must be
emphasized that not all PL/I EVENT variables always contain the address
of an ECB. It is up to the programmer to understand PL/I's use of
ECB's, and to ensure that this routine is not misused. The ECBADDR
makes no checks, and if it is used at an inappropriate time, it will
return garbage.

(35

'1"*

'p.

." .

,,,0

de

REFERENCES

1 IBM Corporation, OS PL/I Checkout and Optimizing Compilers: Language
Reference Manual. IBM document GC33-0009, October, 1976.

2 IBM Corporation, OS PL/I Optimizing Compiler: Programmer's Guide.
IBM document SC33-0006, October, 1976.

3 IBM Corporation, OS/VS2 MVS Supervisor Services and Macro
Instructions. IBM document GC28-0683, April, 1978.

4 Ludlam and Rivas, PL/MSG -An MSG Interface for PL/I. Document
UCNSW-401, Office of Academic Computing, UCLA November 15, 1980.

3

9

i.9

PART III

THE UCLA VIRTUAL REMOTE BATCH TERMINAL
SUPPORT PACKAGE

This section is separately available
as UCLA Document TR-24.

Unlike other sections of this report, this section does not describe
work supported by the Department of Defense. This work was supported by
the Office of Academic Computing of the University of California at Los
Angeles. It is included here because it describes work that will be
used extensively by the NSW project, and because it lays the foundation
for other sections which do describe work supported by the Department of
Defense.

Copyright 1980, Office of Academic Computing, UCLA.
Used by permission.

The University of California requires the following
disclaimer concerning all distributed programs:

Although this program has been tested by its
contributor, no warranty, expressed or implied,
is made by the contributor or the University of

California, as to the accuracy and functioning of
the program and related program material, nor shall
the fact of the distribution constitute any such
warranty, and no responsibility is assumed by the

contributor or the university of California,
in connection therewith.

°'5

Section I

OVERVIEW OF THE VRBT

The UCLA Virtual Remote Batch Terminal (VRBT) package simulates remote
batch terminals connected to JES2 (reference 5). It is a reentrant
subroutine package that creates, manages, and destroys subtasks of its
caller. Each such subtask is a VRBT.

The calling program is the operator of the VRBT. It can read cards
through its card reader, print job output through its printer, and punch
output decks through its punch. It can enter JES2 commands (reference
4) through its keyboard and monitor JES2 replies through its console
display. These five virtual devices are refered to as "channels". In
addition to managing these channels, a VRBT operator program can do
anything it wishes. For instance, it may interface JES2 to unsupported
RJE sources (reference 1), or it may support the submit/retrieve
functions of a private workbench system.

The calling program uses VRBT entries to materialize and destroy an
entire VRBT. Once the VRBT is successfully materialized, all other
operations directed toward it are specific to a channel. The operator
program is free to manage all five channels simultaneously, or he may
limit data transfer to one stream at a time. Usually, though, he will
want to monitor the console channels at all times.

A schematic illustration of the relationship of a VRBT and the VRBT
support subroutines is shown in Figure 1. The purpose of the support
subroutine package is to isolate the VRBT operator program from the
peculiarities of JES2 data stream handling and VTAM transmission
protocols (reference 2). A lot of things can go on while operating a
VRBT, and the operating program should not have to deal with more
complications than are necessarily involved in managing virtual devices.

a, - 38 -

%S

Figure 1. Schematic of a VRBT.

* OPERATOR

* PROGRAM Commands JCL SYSOUT *
* and Messages Decks Data *
* A I n A A *
* I v v I I
* --- 0*
* : VRBT A I I A A *
* :I I V I I* "

**** ***" * Display * * Reader * :*"
* **'"****%** I *** **"

: A V : -

: * Keyboard * * Printer *
: I a: I'

******A***: I I I I * Punch * :***
* : I I I ***":** . * ,
* I II I A : *

* I v I I
* VRBT o ---o*
* SUB- A I A A *
* ROUTINES I I I I I *

** I I I I *7.
* I V V I I *
* --- *
* : A I I A A *

VTAM I I "*
" I I I I I:

- I I I I I:
*: I v v I I :

0 0

* A I I A A *
* JES2 I V V I *
* ~ *******-**..* * % -.- "-. ,--- , -*--...... ...

* * JES2 Remote * * JCL Reader, * *
* * Console * * MSG writer *
* *******,,*,,-*****.........****I....

* V A I
* --- 0
* : I A A : *

*********: BATCH V :
: JOBS *****

* SYSIN/SYSOUT files * :

0-- - - - ------------------------------ 0

-39
IU

IS

It •,

. ' '

Section 2

VRBT ADMINISTRATION

The materialization of a VRBT requires as parameters the Remote Terminal
ID (or RMTID) by which the VRBT is known to JES2, and the password, if
any, that JES2 associates with that ID. These values are specified by a
systems programmer when he generates the JES2 configuration file. Their
assignment to users is an administrative function, and will be handled
differently by different installations. The VRBT user should consult
his systems staff and/or user-services staff for a permanent and
exclusive assignment of an RMTID and password.

The RMTID and password are those specified on a RMfnn parameter of the
JES2 initialization data set. Likewise, the terminal ID is NOT the
"luname" subparameter of the RMTnn parameter, or the string of the form
"RMTnn", but rather the actual number "nn". JES2 uses the RMTID as the
vehicle for partitioning all its job-management activities. The user of
an RMTID effectively sees the operating system as though only those jobs
submitted from and/or bound to his RMTID existed, and he has little
control, on the VRBT level, of when output from these jobs is returned.
For these reasons, it is advisable that an RMTID be permanently assigned
to a user or to a small group of users. However, if the VRBT is to be
managed by an operator program which itself performs job-management
functions, then an RMTID, or a pool or RMTID's, should be permanently
assigned to the class of RJE functions managed by that program.

VRBT materialization also requires the use of an ACBNAME known to VTAM.
This name is chosen by the VRBT support subroutines by using the
external entries APPLALOC and APPLFREE, specifying name pool 0. These
entries are separately documented in an appendix. They include an
assembled-in pool of ACBNAMEs, and maintenance of this name pool is an
administrative function.

DS

- 40 -

----- -- . .-.". -. .

p,'

Section 3

VRBT CHARACTERISTICS

1. The VRBT has a -ixed configuration. It has five channels,
assigned as follows:

Channel 1 is the console display device.
Channel 2 is the console keyboard.
Channel 3 is the card reader.
Channel 4 is the printer.
Channel 5 is the card punch.

These values are defined by assembler macro VRBTEQUS, which is
listed in Appendix B.

2. JES2 compression and compaction are never supported.
Transparency is always supported.

3. From JES2's point of view, the display and keyboard are always
active. The other channels can be activated and deactivated by
JES2 commands entered through the console. The initial states
are active.

4. The VRBT can transfer logical records of up to 255 bytes. In
normal operation, records will be no longer than 80 bytes for
card reader data, or 255 bytes for other media.

5. Data transfer is done on a data set basis. It is not possible to

isolate errors to a lower level. All errors result in the
aborting of the data set being transmitted at the time. For the
printer, punch, and display streams, data set boundaries are
specified by JES2. For the card reader stream, data set
boundaries are specified by the operator program. For the
keyboard, each message is considered a data set.

6. The materialization of a VRBT requires as parameters an RMTID and
a password. The VRBT user must have these values assigned him by
his installation. See the section entitled VRBT ADMINISTRATION
for details.

7. The VRBT package provides routines for opening and closing an
entire VRBT, and routines for getting data from and putting data
to a specific channel. The get and put routines allow the
operator program to perform multiple buffering if he wishes. The
object of a put, or the result of a get, may be either a data
record, an end-of-data-set signal, or an abort-data-set signal.

411

%-"

- 41- ,,'

• °

', '. -'" 3" "J'?,rl¢'.'[J'i" ;".,'..2'f,.'.;e,,',,';'2..',,',£e.,'.,'i,'.'' .,,j
'
.', ,. k .." "." ". '. '. " "' ".'°."'."'. . . " "" '. -." "'

* ..-. -

Only data is normally passed through the keyboard channel, since
data set boundaries occur implicitly after each message.

8. The end-of-data-set or abort-data-set signals provide resynchron-
ization of a channel stream. Thus errors may be isolated to a
single data set. The keyboard channel should always be
synchronized, so that errors can be isolated to a single message.

9. Therefore it may be wise, where practical, to send each input job
as a separate data set. This ensures that, in the event of an
error, the sender knows what jobs were successfully submitted.
But in any case, the command stream can be used to determine
this.

10. In order to prevent an output data set from being lost on the
output end of the VRBT operator program and still deleted by
JES2, an end-of-data-set signal on a JES2-to-VRBT data set
requires a specific confirmation by the operator program.
Pending this confirmation, the VRBT will not acknowledge receipt
of the dataset to JES2, JES2 will not purge the data set, and no
further data transfers will occur on the channel. The VRBTACK
routine is the mechanism for indicating this acknowledgement.
The operator program should call that routine in response to an

end-of-data-set signal, but not until it has been determined
whether the data set has been disposed of in a satisfactory way.
Once the end-of-data-set has been positively acknowledged, the
JES2 copy of the data will be purged.

VRBTACK is required on those channels which transmit true output
data sets, namely the printer and punch channels. It is not
required on the console channel, and should not be used there.

11. There is one exception, called "shutdown", which applies to the
VRBT as a whole. It is signalled by the VRBT to the operator
program through an ECB dedicated to that purpose. Once this ECB
is posted, the operator program should voluntarily close the VRBT
as soon as all current data sets are completed. The posting of
the ECB does not, in itself, affect normal operation of the VRBT;
however, a total loss of communication with JES2 will appear as a
shutdown signal posted simultaneously with abort-data-set
conditions on all active channels.

The values of the codes posted in tlie shutdown ECB are defined by
assembler macro VRBTABCD, which is listed in an appendix.

12. Symmetrically, the operator program can call the VRBTSHT entry to
request that JES2 initiate an orderly shutdown. Calling this
entry has no effect on data sets already in progress. It may
result in the posting of the shutdown ECB.

13. All VRBT subroutines return control to the caller at once, with
completion of the requested operation signalled by the later
posting of an ECB.

- 42 "

-A., -,-...- P,-- ..

14. The low-order 30 bits of a posted ECB receive a status code.
There is a general convention that zero reports normal
completion, a positive value (usually 1) reports an end-of-data-
set condition, and a negative number (usually -1) reports an
error. The VRBT routines will always use fast post (the CS
instruction) where possible. ,

15. The VRBT functions as a subtask of the caller of the "open"
subroutine, which issues an ATTACH macro-instruction. Other VRBT
routines can be called by that task or by any other task;
however, the routines are serially reuseable, and are NOT
protected from use by concurrent callers. Therefore, if the
operator program uses multiple tasking, it should provide its own
interlocks. The only communications between the VRBT subtask and
other tasks are the entries and ECB's described in this document.

16. Except for the VRBTOPN routine, the subroutines cause very simple
task synchronization, and in normal scheduling mode, may issue
WAIT and POST. WAIT is for a CPU-bound event in the VRBT
subtask, and should not be able to delay the calling task. This Il
mode of operation should be satisfactory in all environments
except where WAIT and POST are prohibited for reasons other than
delay.

17. However, for operator programs whose environment absolutely
prohibits the use of WAIT and POST, a special scheduling mode is
defined. In this mode, the ECB's requiring WAIT and POST are
passed back to the calling program, where they can be treated in
whatever way is defined in that environment. These ECB's never
expect or receive a status code, so the operator program need not
indicate nor check for exceptions. Note that the special
scheduling ECB's are not in any way related to the ECB's that are
used to signal the completion of a requested event. Those latter
ECB's are always under the control of the operator program.

18. All VRBT entries are PL/I (optimizing compiler, reference 8)
compatible through the "OPTIONS (ASSEMBLER)" facility. Canned
declarations are provided for both the PL/I and the Assembler
caller. Because the reasons for using special scheduling mode
are quite incompatible with the use of PL/I, the canned PL/I
declarations do not include data used only in that mode. The
PL/I declarations treat ECB's as "FIXED BIN (31)" data.

e

4.

'-J.

- 43 - "

-o°i

• 1'

• " " -" . -." "..':-v ."-'- 'v ~ -' ' -'i-'-' Z- I

Section 4

THE VRTB PACKAGE ENVIRONMENT

The VRBT support subroutines consist of five control sections:

I. VRBTSUBS contains the user-visible entry points. It is about
1200 bytes long.

2. VRBTTASK contains the mainline of the subtask code. It is about
3300 bytes long.

3. VRBTSTRS contains internal routines for the subtask. It is about
9000 bytes long.

4. VRBTTABS contains code and tables to support the formatting of
VTAM RPL's for the VRBTLOG function. It can be placed in such a
way by the linkage edit that it will remain paged out when
logging is not enabled. If you can guarantee that logging will
never be enabled, it can be deleted from the load module. It is
just under 4K bytes long.

5. VRBTDUMP contains code to support debugging under the TSO TEST
debugger. It is not useful in any other context. It can be
deleted from the load module without causing an unresolved
external reference. It is about 256 bytes long.

In addition to the static storage occupied by these control sections,
each materialization of a VRBT will acquire approximately 16K bytes of
working storage from subpool 111. This storage is released when
VRBTCLS is posted complete.

In the process of materializing a VRBT, IDENTIFY and ATTACH are used to
initiate the subtask. The entry that is the object of the IDENTIFY is
VRBTMAIN, which is an entry of VRBTTASK. It is necessary that this
entry point be available to ATTACH through one of three mechanisms:

i. If the load modile containing VRBTMAIN is a legal load module
according to 'he rules of IDENTIFY, then an IDENTIFY will be
issued, and the entiy point will be available. No check is made
to see if the IDENTIFY fails, so if VRBTMAIN is already on the
load list, no harm is done.

2. If the load module is still available from a library that is
known to ATTACH (system linkage library, JOBLIB, STEPLIB, or task
library), and if VRBTMAIN is an alias, then the entry point will
be available. The directory scan will be done under the subtask,
and will not cause the caller of VRBTOPN to wait.

- 44 -

J % - ',% %* %

3. Otherwise, the operator program should perform whatever opera-
tions are indicated in his environment to get VRBTMAIN on the
load list for his task.

Allocation and freeing of the ACBNAME used to materialize a VRBT is
accomplished through LINK to external entries APPLALOC and APPLFREE.
Because these entries constitute a system-wide pool of ACBNAMES that is
subject to update, there should only be one copy of them in the system;
therefore, they should not be linkage-edited into any load module. It
is the calling program's responsibility to ensure that they are
available to the LINKs. Note that the LINKs are executed under the
subtask, and cannot cause the operator program to wait.

*"

o-

~~~~~~~~~~~~...........................i -| ia-.-,,liih ik~ .... .... -- . .... -



IsI

Section 5

VRBT RECORD FORMATS

All data records handled by the VRBT use the same basic representation.
A record is a simple character string containing only data characters.
There are no compression or transparency control characters, and no
device control characters except for ANSI control characters in column
1. The record is thus completely described by a pointer to its first
character (PL/I users note: NOT to a count field) and a count of the
number of characters.

Records are always pruned of all trailing blanks, either by JES2 or by
the VRBT subroutines. Blank pruning is without regard to whether the
data is textual or binary, so if the operator program extends records
output by JES2, even a "binary card" from the punch stream should be
extended to full length by EBCDIC blanks (X'40'), not zeros.

Certain characteristics vary by channel:

1. The printer and punch streams can receive records as short as one
character, or as long as 255 characters. The first character is
always an ANSI carriage (or stacker) control character. It is
expected that most job output will be limited to 133 characters
for printer data and 81 for punch data, but the VRBT doesn't
enforce this. The operator program can truncate or blank-pad as
it sees fit. Zero-length records are represented as a single
carriage-control character (one blank).

2. The card reader stream is going to be interpreted by JES2 as
80-byte card images without ANSI control codes. Therefore the
VRBT truncates any longer record to 80 bytes before pruning
trailing blanks. Truncation is not considered an error
condition.

3. The keyboard and display streams consist of records as short as
one character or as long as 255 characters. There are no ANSI
control codes. Zero-length records are simply deleted from the
display stream; therefore, the operator program should not assume
any vertical formatting (f any kind in this stream.

- 46 -



J.

Section 6

VRBT DATA FLOW

The JES2 VRBT cons.sts of five channels. The keyboard channel is
message oriented, ip order to simulate an operator's console. Keyboard
data trar-'.,f is not posted complete until it is accepted by JES2. If
a trans.css ion error occurs, the operator program is notified, but
previou dnd subsequent transmissions are not directly affected.

The other four channels are data-set oriented. A display "data set" can
be as short as one record, especially since the VRBT deletes empty
records from that stream. While data flow is scheduled on a
logical-record basis, error control is on a data-set basis. If a
transmission error occurs, the operator program is notified, but the
notification should not be interpreted as related to any particular data
record, but rather to the data set as a whole. There is no recovery
defined for such an error.

The virtual console is handled as though it were not locking. If a
locked keyboard is needed, the operator program should lock the keyboard
when VRBTPUT is called to send keyboard data, and unlock it when an EOD
signal is received on the display channel.

S

47-

NS



6.1 SENDING DATA SETS

Once the VRBT is open, the operator program schedules JES2 input data
sets (card reader data) by calling VRBTPUT, passing a VRBT queue element
(VQE) which contains an ECB. The program can schedule as much input
on a channel as it has VQE's to dedicate, with the effect of arbitrarily
deep buffering. If multiple buffering is used, the operator program
must check the completion status of all buffers in the order that they
were queued. Data is always transmitted in that order, and the posting 0
of error conditions that affect the state of the channel is queue-order
dependent. The operator program should provide its own ordering
mechanism, perhaps through an extended VQE format. It should never
attempt to use or interpret the internal chaining fields of the VQE
itself. A VQE and its associated buffer cannot be modified or reused
until its ECB is posted.

The VQE describes the operation being requested through a pointer and a
length. If the length is positive, then the request is for the
transfer of a data record of that length. The pointer points to the
first data byte of that record. If the length is zero, then the
request is for the scheduling of a normal end-of-data-set, and the
pointer is not examined. If the length is negative, then the request is
to abort the data set in progress, and the pointer is not examined. An
abort request takes effect at once, no matter how many records are
queued; however, the request is still queued like a data record for
purposes of posting. Whenever an end or abort request is posted, the
channel is resynchronized, and the operator program can begin a new data
set by calling VRBTPUT.

48

|I



For the card reader stream, there are three elementary events:

1. PUT DATA, in which a data record is to be passed to JES2,

2. PUT END, in which a data set is to be terminated normally,

3. PUT ABORT, in which a data set is to be terminated abnormally.
'a

However, JES2 can also abort a data set, so there are two possible
results of each event:

1. POST OK, meaning that the data set is being processed normally.

2. POST ERROR, meaning that the data set is in error, and is being
flushed.

From the point of view of the operator program, there are three possible
states of the card reader channel, called:

1. SYNCHRONIZED, which is the idle state of the channel. The
channel should be allowed to return to this state between data
sets in order to simplify error control.

2. SENDING, which is the normal state during data set transmission.
During this state, records are being accepted and sent.

3. DRAINING, which is the state between the discovery of an abort
condition and the completion of cleanup operations necessary to
safely return to state SYNCHRONIZED.

All these things are related by this state diagram:

49 -

I0

lb-

1L. 1.



state= I SYNCHRONIZED I SENDING I DRAINING

event=
PUT DATA: POST OK--> POST OK--> POST OK

sta state= can't
SENDING SENDING happen

POST ERR --> POST ERR--> POST ERR -->
state= state= state=
DRAINING DRAINING DRAINING

data set data set data was
aborted aborted discarded

-----------------------------------------------------------------

PUT END: POST OK POST OK --> POST OK

can't state=  can't
happen SYNCH'D happen

POST ERR --> data set POST ERR -- >

state= was sent state=
SYNCH'D POST ERR -- > SYNCH'D

there was state=  data set
no data SYNCH'D aborted
set to JES2 abortedi
end data set

PUT ABORT:j POST OK POST OK -- > POST OK

can't can't can't
happen happen happen

POST ERR -- > POST ERR -- > POST ERR -- >

state=  state= state=
SYNCH'D SYNCH'D SYNCH'D

there was data set data set
no data aborted aborted

W set to
abort

0



6.2 SENDING MESSAGES

Sending on the keyboard channel is handled more simply than on the other
channels, because the keyboard is presumed to have the property that
every message is unrelated to every other message. That is, that a
"data set" always consists of just one message. Given this
presumption, the mechanisms used to delimit data set boundaries are
redundant and are not used. When the VQE ECB for a VRBTPUT on the
keyboard channel is posted with good status, it means that JES2 has
accepted the message. If it is posted in error, it means that the
message did not get to JES2 successfully. In neither case is there any
direct effect on previous or subsequent messages.

Any call to VRBTPUT with an end-of-data-set or abort-data-set signal
will be posted in error and ignored.

6.3 RECEIVING DATA SETS

Once the VRBT is open, the operator program schedules JES2 output data
sets (data for the printer, punch, or display) to its buffers by
repeatedly calling VRBTGET, passing a VRBT queue element (VQE) which
contains an ECB. The program can schedule as many buffers on a channel
as it has VQE's to dedicate, with the effect of arbitrarily deep
buffering. If multiple buffering is used, the operator program must
check the completion status of all buffers in the order that they were
queued. Received data is always presented in that order, and the
posting of exception conditions that affect the state of the channel is
queue-order dependent. The operator program should provide its own
ordering mechanism, perhaps through an extended VQE format. It should
never attempt to use or interpret the internal chaining fields of the "
VQE itself. A VQE and its associated buffer cannot be modified or
reused until its ECB is posted.

The VQE describes the operation being requested through a pointer and a
length. The pointer points to the first data byte of an empty buffer
which can accomodate a record of length less than or equal to that
indicated by the length field, which must be positive. If and when a
record is supplied, VRBTGET will reset the length to the actual length
of the record. If the record exceeds the supplied buffer length, it is
truncated without comment; therefore, the operator program should never
use buffers smaller than the maximum expected record size. JES2 will
never send records longer than 255 bytes, so buffers larger than that
are never needed.

In addition to scheduling output buffers with VRBTGET, the operator
program may have the need to abort an output data set and cause JES2 to
hold the data for later retransmission. It will also be required to
confirm a normal end-of-data-set signal from JES2. Both these
requirements are met by the VRBTACK routine, which communicates a
positive or negative status from the VRBT operator program to the

- 51 -

b 0



da

printer or punch channels. VRBTACK should not be called for the
display channel; EOD acknowledgements are not required on that
channel, and errors on that channel will abort the entire VRBT.

In the first case, the operator program uses VRBTACK to signal an error
condition back to JES2, during otherwise normal data transmission, but
in the direction opposite data flow. Because of the several levels of
mechanism between the operator program and JES2, and because of the
possibility of extensive data buffering, this signal will arrive at JES2
at some other point in the data stream than the one at which the d
operator program sent it. However, the result of the signal will be
the transmission of a second error signal back toward the operator
program, and this signal, arriving in the data stream, can be
synchronized like any other JES2-generated error. Whether an error
condition is initiated by JES2 or by the operator program, the operator

program must continue to accept buffers queued to VRBTGET until one is d
posted with the end-of-data-set code.

In the second case, the object is to confirm to JES2, before it purges
an output data set, that the entire data contents of that data set have
arrived without error, and have been safely disposed of by the end-using
process. The mechanism to achieve this is to require that VRBTACK be
called by the operator program as a response to any end-of-data-set
condition signalled on a buffer scheduled by VRBTGET on the printer or
punch (not the display) channels. Until this response is
received, no further data will flow in the channel (this also ensures
that any negative acknowledgement sent by the operator program does not
cross data-set boundaries in transit). The acknowledgement is required
regardless of whether the data set is terminating normally or in error.
If the termination is already in error mode, the value of the acknow-
legement (positive or negative) returned by VRBTACK is immaterial;
however, if the data set is terminating normally, a negative VRBTACK is
guaranteed to arrive at JES2 in time to cause an error termination.
This is the mechanism that prevents such an output data set from being
purged.

For the printer, punch, or display data streams, the operator program
accepts data, end signals, or abort signals from JES2. It also
provides mandatory acknowledgements after an end signal. These are the
four synchronous events that determine the state of a VRBT output
channel. The operator program can also request a data set abort.

This request is asynchronous to the data flow; however, it will
eventually cause a synchronous error event. So, from the point of view
of the operator program, there are only four elementary synchronous
events:

1. GET DATA, in which a data record is received from JES2,

2. GET END, in which a data set is to be terminated normally,

3. GET ABORT, in which a data set is to be terminated abnormally.

4. Mandatory VRBTACK.

4 - 52 -

V •V

#.
, Z ZM - . - -

- ,-.8° " .P"- ,"' €'' -s, . .- a-" '.. --. " '" "<" -" " " "



There are four states of such a channel, called:

1. SYNCHRONIZED, which is the idle state of the channel. The
channel must return to this state between data sets.

2. RECEIVING, which is the normal state during data set
transmission. During this state, records are being placed into
scheduled buffers.

3. DRAINING, which is the state between the discovery of an abort
condition and the completion of cleanup operations necessary to
safely return to state SYNCHRONIZED. In this state, any JES2
output records are being flushed, and queued buffers may be being
posted with error indicators.

4. CLOSING, which is the state between DRAINING and SYNCHRONIZED
during which the two ends of the transmission are brought into
perfect synchronism for purposes of error control.

All these things are related by this state diagram:

53

eC

op

- 5 ,'-

P , Z . *.' " ." " -* . " . • - "' '" ' ' '." " ' " % -. % '.% ' % % % " N.



1M .- Wav - W. -- 'I - .-4 LWV V- zl- . -

state= I SYNC'D RECEIVING I DRAINING ) CLOSING

event= I I
GET I state = I state = I can't happeni can't

DATA: I RECEIVING I RECEIVINGI (will be a I happen
I I GET ABORT) I

SI I

I I I I
GET I state [ state= state= can't

END: I CLOSING I CLOSING I CLOSING I happenSI I

I I I I
GET I state = I state = I state = I can't

ABORT:I DRAINING I DRAINING I DRAINING I happen

I I I I

I I I I
VRBTACK:I Ignored I Ignored I Ignored I state

I (see note) I I SYNC'D
1 II I

NOTE: When VRBTACK is received in the RECEIVING state, and
it indicates a negative acknowledgement, an error
signal is propagated back to JES. This will cause
an eventual GET ABORT event; however, it has no
immediate and direct effect on the channel state.

54-

no-

loc

4.' , ' ' -- ' ' ", "' ' " ' - ". -- " '-. "-J - ". - .""" ". L". . , -'



Section 7

SPECIAL SCHEDULING MODE

In special scheduling mode, the calling sequences of all the subroutines
except VRBTOPN are extended by one parameter, called the special
scheduling return code, or SSRC. The presence of this extra parameter
is the only thing that signals the routine that special scheduling is to
be used for this call. While it is expected that an operator program
will use either all special scheduling or all normal scheduling, nothing
requires this to be the case, since the decision is made on a per-call
basis.

The special scheduling return code contains two data: the first byte
is called the special scheduling flag, and the remaining three bytes are
called the special scheduling ECB pointer. Note that, unlike the main
ECB of the VQE, which is physically present in the VQE, the special
scheduling ECB is located elsewhere, and is pointed to by the SSRC.

On return from a special scheduling request, the special scheduling flag
is set to one of three values, chosen for easy testing with the "TM"
instructions:

I. flag=X'FF': The request has been scheduled successfully without
the need for WAIT or POST (although "fast post" may have been
used). Operation will proceed as in normal scheduling mode. In
this case, the special scheduling ECB pointer is zero.

2. flag=X'80': The request cannot be scheduled without a WAIT. The
special scheduling ECB pointer points to an ECB. The operator
program must WAIT (or the equivalent) on this ECB and then repeat
the request. The program must not assume that the repeated
request will succeed either, although it usually will. No status
code is returned in the posted ECB.

3. flag=X'00': The request has been scheduled, but a POST is needed
to wake the VRBT task. The special scheduling ECB pointer points
to an ECB. The operator program must POST (or the equivalent)
this ECB and then proceed as for normal scheduling. The request
does not have to be repeated. No particular post code is needed
in the POST.

Using the macros expanded in the appendix entitled ASSEIBLER
DECLARATIONS, one can test these conditions with the sequence:

TM flag,VSRMSK
BC VSBOK,ok-processing

- 55 -

"... .~ - " " .. .. .. - - . . . . . . . . . . .



BC SBST~os -roesi-

BC VSBPSIT,post-processing

BC VSWAITwaitprocss 56

MA 'A



-4 4

Section 8

VRBT SUBROUTINE CALLS
0

The VRBT subroutine calls are described below in terms of PL/I CALL
statements. The Assembler calls are the same, since the PL/I declara-
tions all use the "OPTIONS(ASSEMBLER)" facility to avoid passing
descriptors. The "VL" bit must be set in all calls. See the

i appendices for the formats of any data fields referenced here by names
in all caps.

Some of the VRBT subroutine calls include a data element called a VRBT
Queue Element, or VQE. A VQE represents a "pending event". A
pending event is created when a VQE is passed to a VRBT entry point, and
remains pending until the ECB in the VQE is posted. During the time
that the event is pending, the VQE belongs to the VRBT, and it should
not be modified or examined by the operator program except to test or
WAIT on the ECB. When the event is not pending, the VQE belongs to the
operator program, and the VRBT has no knowledge of it.

The operator program initializes the data pointer and data length fields
of the VQE according to the entry being called. Before control
returns, the ECB will be cleared, so the operator program need never
clear a VQE ECB. The chain fields of a VQE are for the internal use of
the VRBT, and should not be initialized or altered by the operator
program. "

"i5 7 ,',1

•~ %I

• 
cz



8.1 VRBTOPN -- MATERIALIZING THE VRBT

The VRBTOPN routine materializes a VRBT, logs it on to JES2, and primes
its channels. Control returns to the caller at once, but the VRBT is
not ready for use until an ECB is posted, and then only if the post code
is zero. The calling sequence is:

CALL VRBTOPN (rmtid, password, openecb,shutecb,
handle [, modifier-structure ])

where:

1. "rmtid" is the terminal ID by which JES2 knows the VRBT to be
logged on. This is a small integer.

2. "password" is the 8-character password that JES2 has been told to
associate with this VRBT. It is blank if no password has been
established.

3. "openecb" is the name of an ECB to be posted when the open
operation is complete. VRBTOPN will clear it before returning
control, so the operator program need not initialize it in any
way. When this ECB is posted, if "shutecb" is not also posted,
then the VRBT is logged on to JES2, and will remain so until
logged off by a VRBTCLS call.

4. "shutecb" is the name of an ECB to be posted if and when JES2 or
some other process vital to the VRBT's existence requests
shutdown. If this ECB is ever found posted, then the user
should close all channels at the end of their current data sets,
and call VRBTCLS. If this ECB is found posted at the same time
that "openecb" is found posted, then the terminal was not
succesfully materialized. The operator program can only call
VRBTCLS to release any allocated resources. If, during normal
VRBT operation, JES2 contact is lost, then all active channels
will receive an automatic abort-data signal, and this ECB will be
posted to ensure that new data transfers are not attempted.

5. "handle" is a pointer variable which receives a value identifying
this opening VRBT. This value must be passed unaltered to all

subsequent calls until it is invalidated by VRBTCLS. This
mechanism permits the VRBT package to be reentrant, and allows an
operator program to manage more than one VRBT at a time. The
handle is set and is valid on return from the call to VRBTOPN.
It is not dependent on the successful materialization of the
VRBT, or on the posting of any ECB. Once the operator program is
in possesion of a handle, resources are allocated to the VRBT,

N and VRBTCLS must eventually be called to free them. It is a
good idea to call VRBTCLS as a part of abnormal termination of
the operator program, when that is possible.

- 58 -

% %



6. "modifier-structure" is a structure containing data that directs
VRBTOPN to set up alternate modes of VRBT operation. It is an
optional argument which, if provided, can change thE behavior of
the VRBT. The argument is a data structure that contains several
different elements. In order to simplify things, the strucure
is defined to consist of fixed-length items, and the first item
is a bit mask that determines which of the following items
contain data and which are to be ignored. The structure is
defined by assembler macro VRBTOPTS, which is listed in an
appendix. the data that can be passed include:

* A bit mask that filters the generation of messages for the

VRBTLOG routine. Each bit in the mask corresponds to a class
of messages. If the bit is one, the corresponding class of
messages will be generated; otherwise, they will not. The
correspondence is:

bit 0 = completed RPL's.
bit I = RU buffers from completed RPL's.
bit 2 = comments.
bit 3 = postcodes of important ECB's.
bit 4 = entry into each internal routine.
bit 5 = exit from each internal routine.
bit 6 = postcodes and record contents

of VQE's.

If this mask is not enabled, the default is to log completed
RPL's, important ECB's, and comments.

* The 8-character VTAM LUNAME by which JES2 is to be addressed.
This datum supports the use of test JES's for VRBT debugging.
The default value is "JES2", which selects the production JES2.

* An 8-character JES2 line passwcrd. The default value for this

datum is blanks.

* An 8-character VTAM ACBNAME password, to be applied to the
ACBNAME chosen from the APPLALOC pool. The default value for
this datum is blanks. If passwords are to be used, the same
one must apply to all ACBNAMES in a pool.

* A timeout value for the operations involved in meterializing a
VRBT. The default is 120 seconds.

* A debugging switch to arm the debugging dump mechanism. When
this bit is set, the VRBT will forget that it is a read-only
program, and will store pointers within one of its code
sections. This should not be done except to support online
debugging activities.

* An enable bit for ASA carriage control codes of '0' and '-'.

If this bit is not set to one, these control codes will be
represented as multiple blank lines. .

- 59 -

°"



8.2 VRBTCLS -- DESTROYING A VRBT

The VRBTCLS roatine does whatever remains to be done to destroy a VRBT
and release any resources allocated to it. Depending on the state of
the VRBT, this may involve aborting any active data streams, logging off
JES2, terminating the VRBT subtask, and freeing main storage. Any
queued VQE's are dequeued, but they are not necessarily posted. The
calling sequence is:

CALL VRBTCLS (handle, ecb [, ssrc ])

where:

1. "handle" is the handle value returned by VRBTOPN. After this
call is posted complete, this value will be invalid.

2. "ecb" is the name of an ECB to be posted when all operations
needed to quiesce the VRBT are complete. It will be cleared
before control returns from this call. When it is posted, the
low-order 24 bits will receive the corresponding bits of the
TCBCMP field of the Task Control Block (TCB) of the VRBT subtask.
For normal termination, this will be zero.

3. "ssrc" is a fullword to receive the special scheduling return
code. If present, it modifies the behavior of the VRBT. See
the section entitled "SPECIAL SCHEDULING MODE".

d?

.5.O



8.3 VRBTSHT -- REQUESTING SHUTDOWN

The VRBTSHT routine is the symmetric counterpart of the "shutdown ECB".
Calling this entry causes the VRBT to request that JES2 not begin any
new outbound data sets when the current ones are complete. Because of
the usual timing problems, it is possible that a new data set will be
begun between the time that the operator program issues this call and
the time that the request actually reaches JES2. The operator program
should be written in such a wav that it will not matter whether this "
call results in the posting of the "shutdown ecb" or not. The calling
sequence is:

CALL VRBTSHUT (handle r, ssrc I)

where:

1. "handle" is the handle value returned by VRBTOPN.

2. "ssrc" is a fullword to receive the special scheduling return
code. If present, it modifies the behavior of the VRBT. See
the section entitled "SPECIAL SCHEDULING MODE".

61 -

M. J%.



8.4 VRBTPUT -- SENDING DATA TO JES2

The VRBTPUT routine schedules a line of card-reader or keyboard data to
be sent to JES2. Control returns at once, but the buffer and VQE may
not be reused until an ECB is posted. VRBTPUT also schedules normal and
abnormal end-of-data-set signals. The calling sequence is:

CALL VRBTPUT (handle, channel, vqe [, ssrc])

where:

1. "handle" is the handle value returned by VRBTOPN.

2. "channel" is a either 2 to indicate a remote operator command
(keyboard data) or 3 to indicate a jobstream card image (card
reader data). If it is anything else, the VQE will be posted
"in error", and nothing else will happen.

3. "vqe" is the name of a VQE to represent this pending event The
operator program should initialize the data pointer and data
length fields to describe the data or exception being passed.
Data records will be truncated to 80 bytes for card images and
255 for keyboard input.

The ECB will be posted when the event is complete. For card-
reader data, this will be when the data has been moved out of the
operator program's buffer area. For keyboard data, it will be
when the message has been accepted by JES2. If the ECB is posted a
with ADDR(VQEMECB)->VECBCODE=O, then an error exists in the

channel. For keyboard data, this means that the message was not
received by JES2. For card-reader data, it means that the entire
data set being sent on this channel is being aborted, and that
the channel should be resynchronized. Unless the call that was
posted in error was itself a resynchronizing call, the operator
program should schedule a normal or error end-of-data-set.
Until resynchronization is achieved, all queued data will be
flushed and posted with an error code. After resynchronization,
the operator program may use VRBTPUT to send another (or to
resend the same) data set.

4. "ssrc" is a fullword to receive the special scheduling return
code. If present, it modifies the behavior of the VRBT. See
the section entitled "SPECIAL SCHEDULING MODE".

62

u - 62 -

°I



8.5 VRBTGET -- RECEIVING DATA FROM JES2

The VRBTGET routine schedules a buffer to receive a line of printer,
punch, or display data from JES2. Control returns at once, but the
buffer and VQE may not be reused until an ECB is posted. VRBTGET also
schedules normal or abnormal end-of-data-set signals. The calling
sequence is:

CALL VRBTGET (handle, channel, vqe [, ssrc])

where:

1. "handle" is handle value returned by VRBTOPN.

2. "channel" is a either 1, requesting an operator message (display
data), 4, requesting a line of printer data, or 5, requesting a
line of punch data. If it is anything else, the VQE will be
posted "in error", and nothing else will happen.

3. "vqe" is the name of a VQE to represent this pending event. The
operator program should initialize the data pointer and length.
The length must be that of the empty buffer, and should thus be
positive and less than 256.

The ECB will be posted when the event is complete. The low-order
30 bits will receive the usual status code: zero implies that a
record has been returned, positive implies that a normal-end-of- N.
data is being returned, and negative implies an error. This
code is actually redundant with the returned length field, and
may not need to be examined.

When a data record is actually placed in a buffer, the length
field will be reduced to that of the actual record. If the
record does not fit into the buffer, it will be truncated without
comment; therefore, the operator program should never use a
buffer smaller than the maximum record that it expects. The VRBT
cannot receive data records longer than 255 bytes; records longer
than that will be truncated by JES2 without comment. Therefore,
the operator program need never use buffers larger than 255
bytes.

If the returned length field is not positive, it conveys the
same information, although in a different form, as the value
returned in the posted ECB. If it is negative, then an error
exists in the channel, and the entire data set being sent on this
channel has been aborted. The operator program should discard
this and any subsequent queued buffers that are posted in error,
until one indicates a normal end-of-file. For display data, an
error means that a message from JES2 to the VRBT operator was not
received sucessfully. If the operator program knows what sort
of message was expected, then it may be able to send a JES2
command requesting the same data. Otherwise, there is nothing
that can be done, and the error should probably be ignored.

-63

40



M W rVW

If the returned length field is zero, then the current data set
has been finalized normally. The operator program can
continue to schedule buffers through VRBTGET, but, for the
printer and punch (not display) channels, no more data will be
delivered until a call has been made to routine VRBTACK, and the
next data actually acquired will be for a new data set.

4. "ssrc" is a fullword to receive the special scheduling return
code. If present, it modifies the behavior of the VRBT. See
the section entitled "SPECIAL SCHEDULING MODE".

'II

IJ

64 -

U 4 . - .



8.6 VRBTACK -" PROVIDING ERROR CONTROL

The VRBTACK routine either interrupts an output data set, causing it to
terminate in error, or it resynchronizes the two ends of the
transmission of a output data set after an end-of-data-set indication.
This routine is only used on the printer and punch channels, never on
the display channel. The former use is optional, but the latter use is
required in order to re-enable data flow on the channel. The calling
sequence is:

CALL VRBTACK (handle, channel, ack [, ssrc ])

where:

1. "handle" is handle value returned by VRBTOPN.

2. "channel" is the channel number of one of the output (JES2 to
VRBT) channels.

3. "ack" is a one-bit value indicating:

* If 'I'B, that the data set has been finalized properly, and,
unless some other error condition exists, that JES2 can safely
purge its copy. This form of the VRBTACK call has no effect
unless the channel is in CLOSING state.

* If 'O'B, that the data set has encountered some error. This
form of the call can be used at any point in the handling of an
output data set to schedule a transmission abort. If used
when the channel is in the CLOSING state, it requests that JES2
not delete its copy of the data set just transmitted, but
reschedule it for retransmission.

A

4. "ssrc" is a fullword to receive the special scheduling return
code. If present, it modifies the behavior of the VRBT. See
the section entitled "SPECIAL SCHEDULING MODE".

-65-

0 "

ic



4~44

Section 9

THE VRBT LOG

For debugging purposes, the VRBT support subroutines can be made to log
all VTAM events. This is accomplished through a weak enternal

reference to symbol VRBTLOG. Ii this reference is resolved in the
running program, then it will be used in a CALL to dispose of an edited

line of log data. If the reference is not resolved, then the log data

line is not generated.

The VRBTLOG routine must be an Assembler routine that is capable of

being executed under any TCB and under either a PRB or an IRB.

Nevertheless, entry into the routine is strictly serialized, even if log
data must be lost to accomplish that. Therefore, the routine need not
necessarily be reentrant unless more than one VRBT can be materialized 4

by the same load module.

The VRBTLOG calling sequence has deliberately been made incompatible
with PL/I. Register 1 is either zero, in which case there is no data

associated with this call, or it points directly to a 1-byte length

field followed by that many bytes of edited data. Register 13 points
to a useable save area. Registers 14 and 15 are as used by "BALR

14,15". Register 0 always contains the same value in its low order
three bytes -- the address of a fullword that the VRBTLOG can use for

whatever purpose it wishes. For instance, a reentrant routine would
store the address of its dynamic storage here. The address is bound to
a particular VRBT materialization. The top byte of register 0 contains

status bits, as follows:

1. bit 0 = 1 -- > this is not the first entry to VRBTLOG. If this
bit is 0, the routine should do whatever initialization it

requires.

2. bit 1 = 1 -- > this will be the last entry to VRBTLOG. If this

bit is 1, the routine should do whatever finalization it

requires.

3. bit 2 = 1 -- > asynchronous log data was lost during the previous
entry to VRBTLOG. The routine may ignore this situation if it

wishes, but usually it should pass on a lost-data indicator in
its own output stream.

-66-



S.4

Section 10

THE VRBT DEMONSTRATION PROGRAM

The VRBTDEM program is a PL/I main program that is used as a TSO command
processor. Its purpose is to exercise or demonstrate the VRBT
subroutine package, functioning as a VRBT operator program. It
responds to commands from the user, but due to the blocking nature of
TSO TGET, it must usually run without a terminal input operation
pending. At such times, the user can enter a command through an
attention interruption.

So VRBTDEM operates in two modes. In "spin" mode, it concentrates on
operating the VRBT, using WAIT when there is no immediate work to do.
When the user causes an attention interruption, the VRBT enters
"command" mode.

In "command" mode, the VRBT accepts commands from the user's terminal.
Between each such command, VRBT operation proceeds as a background
activity; however, when there is no immediate work to do, instead of
issuing WAIT, the program requests another command. Therefore, little
or no work is done until the VRBT again enters "spin" mode.

VRBTDEM drives the reader, printer, and punch channels by connecting
them to data sets according to user command. The VRBT operator console
is mapped directly onto the user s terminal. Commands may be sent with
a SEND command, and messages are displayed on the terminal when they are
received.

A VRBTLOG entry is included in VRBTDEM. All log data will be written to
a file named VRBTLOG. If no data set has been allocated to this file,
no log data will be written. It is permissible to allocate this file
to the terminal.

The following commands are recognized and acted on by VRBTDEM.

1. OPEN rmtnn, password

This command materializes a VRBT using the given terminal id
number and password.

2. CLOSE

This command destroys the VRBT.

3. CONNECT ( Reader f PRinter I PUnch }, dsname I

1',-67-..

p •.

N. NY% V

A..



This command connects a virtual device to a data set. Only the
letters "R", "PR", or "PU" are actually examined. When the
connected device is the reader, the data set named by "dsname" is
actually read and written to JES2. When end-of-file is reached,
the connection is broken. Don't use "*" as the dsname.

When the connected device is the printer or punch, the data set
named by "dsname" is set up to receive any output from JES2 on
that channel. Data will actually move only when it is sent by
JES2. The connection lasts only until the end of the
transmission data set. You can use "*" as the dsname.

An attempt to connect an already-connected device will cause an
error message, and the command will be ignored.

4. KEYIN text

This command schedules its entire operand field ("text") as a
JES2 command, and sends it down the keyboard channel.

5. RUN

This command causes VRBTDEM to enter "spin" mode until inter-
rupted by an attention interruption.

6. <attention>

An attention interruption can be used to interrupt "spin" mode,
so that VRBTDEM immediately requests another sequence of
commands.

% 7. <null>

A null command line can be used to allow background processing to
proceed during "command" mode.

8. Other commands

VRBTDEM supports commands to materialize multiple concurrent
VRBTs, and to limit the work done in "spin" mode. These
commands are not useful to the casual user, and so are not
documented here. They are explained in commentary in the VRBTDEM
source file.

68

I 6-" 
"



Section I I*

APPENDIX A -- PL/I DECLARATIONS

DECLARE
(VRBTOPN ENTRY (FIXED BIN(31), CHAR(8), FIXED BIN(31),

FIXED BIN(31), POINTER,*)
(VRBTGET, VRBTPUT) ENTRY (POINTER, FIXED BIN(1S), )
VRBTCLS ENTRY (POINTER, FIXED BIN(31)),
VRBTSHT ENTRY (POINTER),
VRBTACK ENTRY (POINTER, FIXED BIN(iS), BIT(1) ALIGNED))

OPTIONS (ASSEMBLER, INTER),
1 VQE BASED,
2 (VQEFLNK, BQEBLNK) POINTER, /* INTERNAL LINKS
2 VQEMECB FIXED BIN(31), /* TRANSFER COMPLETE ECB *
2 VQEDPTR POINTER, /* ADDR OF BUFFER
2 VQEDLNG FIXED BIN(31), 1* LENGTH BUFFER OR DATA ~

1 VRBTCHANNELS STATIC,
2 (VDISPLAY INIT(l), /* CHANNEL NUMBERS

VKEYBOARD INIT(2), /* ASSIGNED THE VARIOUS ~
VREADER INIT(3), /* VIRTUAL DEVICES
VPRINTER INIT(4),
VPUNCH INIT(5)) FIXED BIN(15),

1 VRBTRESULTS STATIC,
2 (VOK INIT(O), /* DATA TRANSFERRED

VERR INIT(-l), /* DATA SET ABORT
VEND INIT(1) /* END OF DATA SET-

FIXED BIN(15),

1 VRBTACKVAIS STATIC,
2 (ACKOK INIT('1'B),/* DATA SET ALL OK

ACKNOK INIT('O'B))/* DATA SET ABORT
BIT(1) ALIGNED;

-69-



Section 12

APPENDIX B -- ASSEMBLER DECLARATIONS

This section lists the macros available and gives a brief explanation of
their function. Then it includes the actual unexpanded macro text for
each one. These macros are simple, with parameterization extending
little beyond labels, so the unexpanded text is expected to be
reasonably well self documenting. Available macros are:

VRBTABCD defines the post codes for the "shutdown" ECB.

VRBTACK defines the calling sequence to VRBTACK.

VRBTCLS defines the calling sequence to VRBTCLS.

VRBTEQUS defines the numeric values of the channels and the
values associated with using special scheduling.

VRBTGET defines the calling sequence to VRBTGET.

VRBTOPN defines the calling sequence to VRBTOPN.

VRBTOPTS defines the VRBTOPN options structure.

VRBTPARM is a package invoking all the other macros that
define calling sequences.

VRBTPUT defines the calling sequence to VRBTPUT.

VRBTSHT defines the calling sequence to VRBTSHT.

VRBTVQE defines the VRBT queue element.

The text of the macros is:

"a"
- 70 -

% % %



MACRO
&P VRBTABCD
&P.CLOS EQU 0 CLOSE REQUESTED BY OPER. PGM.
&P.RSHT EQU 1 SHUTDOWN REQUESTED BY OPER. PGM.
&P.NOID EQU 2 THERE ARE NO APPLIDS LEFT
&P.EXIT EQU 3 UNSUPPORTED EXIT ROUTINE RAN
&P.IRER EQU 4 CAN'T INIT. INBOUND BRKT. CNTL.
&P.KEYB EQU 5 ERROR ON KEYBOARD
&P.SHDN EQU 6 VTAM IS SHUTTING DOWN
&P.OUT EQU 7 ERROR ON AN OUTPUT CHANNEL
&P.READ EQU 8 ERROR ON READER CHANNEL
&P.TORS EQU 9 TIMEOUT IN REQSESS REQUEST
&P.TOBN EQU 10 TIMEOUT ON BIND
&P.TOOS EQU 11 TIMEOUT ON OPENSEC
&P.TOSD EQU 12 TIMEOUT ON START DATA TRAFFIC
&P.TORJ EQU 13 TIMEOUT ON BIND REJECT
&P.TOES EQU 14 TIMEOUT IN ENDSESS SEQUENCE
&P.NATT EQU 15 ATTACH UNSUCCESSFUL
&P.ABND EQU 16 ABEND -- SEE "CLOSE" ECB FOR WHY
&P.OPEN EQU 19 UNKNOWN OPEN ERROR
&P.MDEF EQU 20 NETWORK SEEMS MIS-DEFINED
&P.STOR EQU 21 TEMPORARY STORAGE SHORTAGE

MEND

MACRO
&V VRBTACK

&V DS OF PARAMETER LIST TO VRBTACK:
&V.HDL DS A -- > F'VRBT HANDLE'
&V.CHAN DS A -- > Y(CHANNEL NUM1BER)
&V.ENDN DS OX'80' VL BIT FOR NORMAL SCHEDULING
&V.VAL DS A -- > BL.I(ACK)
&V.VBIT EQU X'80' BIT 1=1 --> OK, =0 --> BAD
&V.ENDS DS OX'80' VL BIT FOR SPECIAL SCHEDULING
&V.SSECB DS A -- > A(O) TO GET SPEC SCHED ECBAD

MEND

MACRO
&V VRBTCLS
&V DS OF PARAMETER LIST TO VRBTCLS:
&V.HDL DS A -- > F'VRBT HANDLE'
&V.ENDN DS OX'80' VL BIT FOR NORMAL SCHEDULING
&V.ECBC DS A -- > A(O) CLOSE COMlPLETE ECB
&V.ENDS DS oX'80' VL BIT FOR SPECIAL SCHEDULING
&V.SSECB DS A -- > A(O) TO GET SPEC SCHED ECHAD

MEND

71

-:]-*



Iv

MACRO
&V VRBTEQUS
&V.DSPLY EQU 1 CHANNEL NUMBER FOR CONSOLE
&V.KEYBD EQU 2 CHANNEL NUMBER FOR KEYBOARD
&V.READR EQU 3 CHANNEL NUMBER FOR CARD READER
&V.PRNTR EQU 4 CHANNEL NUMBER FOR PRINTER
&V.PUNCH EQU 5 CHANNEL NUMBER FOR PUNCH

SPACE
&V.SROK EQU X'FF' SS FLAG FOR SCHEDULING COMPLETED
&V.SRWT EQU X'80' SS FLAG FOR WAIT REQUIRED
&V.SRPST EQU X'O0' SS FLAG FOR POST REQUIRED

SPACE
&V.SRMSK EQU X'CO' MASK TO TEST SS FLAG, & BRANCHES:
&V.SBOK EQU I (BO) SS BRACH FOR SCHEDULING COMPLETED
&V.SBWT EQU 4 (BM) SS BRANCH FOR WAIT REQUIRED
&V.SBPST EQU 8 (BZ) SS BRANCH FOR POST REQUIRED

SPACE
&V.NMDVS EQU 5 NUMBER OF DEVICES/SESSIONS
&V.NMTHS EQU 6 NUMBER OF THREADS

MEND

MACRO
&V VRBTGET
&V DS OF PARAMETER LIST TO VRBTGET:
&V.HDL DS A -- > F'VRBT HANDLE'
&V.CHAN DS A -- > Y(CHANNEL NUMBER)
&V.ENDN DS OX'80' VL BIT FOR NORMAL SCHEDULING
&V.VQE DS A -- > VQE DESCRIBING EMPTY BUFFER
&V.ENDS DS OX'80' VL BIT FOR SPECIAL SCHEDULING
&V.SSECB DS A -- > A(O) TO GET SPEC SCHED ECBAD

MEND

MACRO
&V VRBTOPN
&V DS OF PARAMETER LIST TO VRBTOPN:
&V.RMT DS A -- > F'RMT #'
&V.PASS DS A -- > CL8'JES2 PASSWORD'
&V.ECBO DS A -- > A(O) OPEN COMPLETE ECB
&V.ECBS DS A -- > A(O) SHUTDOWN ECB
&V.END DS OX'80' VL BIT IF NO OPTIONS.
&V.HDL DS A --> A(O) TO RECEIVE VRBT HANDLE.
&V.ENDO DS OX'80' VL BIT IF OPTIONS.
&V.OPTS DS A -- > DEBUGGING OPTIONS.

MEND

72-

- . 2 ;. /, ,_-:i-:,-. . .- : . ..-. . . °-.-.: . :, ..- . - ... : , . .I



MACRO
&L VRBTOPTS
&L.OPTS DSECT DESCRIBING THE OPTIONAL DEBUGGING ARGS:
&L.OMAP DS BL2 OPTIONAL ARGUMENT MAP:
&L.OMLOG EQU X'80' THERE IS A LOG MASK
&L.OMJES EQU X'401 THERE IS A JES LUNAME
&L.OMLUPW EQU X'1O' THERE IS A VTAM LU PASSWORD
&L.OMLPW EQU X'08' THERE IS A LINE PASSWORD
&L.OMRSTO EQU X'20' THERE IS A REQSESS TIMEOUT
&L.OMDUMP EQU X'04' ENABLE DUMP (NOT A MAP BIT)
&L.OMSP3 EQU X'02' ENABLE ASA CC'S OF "-" AND "0"

SPACE
&L.OLOG DS BL2 LOG MASK
&L.OJES PS CL8 JES LUNAME
&L.OLUPW DS CL8 VTAM LU PASSWORD
&L.OLPW DS CL8 LINE PASSWORD
&L.ORSTO DS FL4 REQSESS TIMEOUT

MEND

MACRO
&D VRBTPARM
&D DSECT DESCRIBING THE PARAMETERS TO THE VRBT SUBS:

SPACE
VPO VRBTOPN

SPACE
ORG &D

VPC VRBTCLS
SPACE
ORG &D

VPS VRBTSHT
SPACE
ORG &D

VPG VRBTGET
SPACE
ORG &D

VPP VRBTPUT
SPACE
ORG &D

VPA VRBTACK
ORG
MEND

73 -

, , . , . ' .-. . " " o' . " ." . . ' . .. " ." " ... ' - .' o. ' . . ' ' .' , . ' .' , - . '..-. , j .



MACRO
&V VRBTPUT
&V DS OF PARAMETER LIST TO VRBTPUT:
&V.HDL DS A -- > F'VRBT HANDLE'
&V.CHAN DS A -- > Y(CHANNEL NUMBER)
&V.ENDN DS OX'80' VL BIT FOR NORMAL SCHEDULING
&V.VQE DS A --> VQE DESCRIBING DATA BUFFER
&V.ENDS DS OX'80' VL BIT FOR SPECIAL SCHEDULING

&V.SSECB DS A -- > A(O) TO GET SPEC SCHED ECBAD
MEND

MACRO
&V VRBTSHT
&V DS OF PARAMETER LIST TO VRBTSHT:

&V.ENDN DS OX'80' VL BIT FOR NORMAL SCHEDULING
&V.HDL DS A --> F'VRBT HANDLE'
&V.ENDS DS OX'80' VL BIT FOR SPECIAL SCHEDULING
&V.SSECB DS A -- > A(O) TO GET SPEC SCHED ECBAD

MEND

MACRO
&V VRBTVQE
&V DS OF
&V.FLNK DS A INTERNAL FORWARD CHAIN. 0
&V.BLNK DS A INTERNAL BACK CHAIN.
&V.MECB DS A MASTER EVENT ECB.
&V.DPTR DS A POINTER TO DATA BUFFER.
&V.DLNG DS A LENGTH OF BUFFER OR DATA.
&V.XTNT EQU *-&V VQE EXTENT.

MEND

74

y.

74S

U



Section 13

APPENDIX C -- JES2 INITIALIZATON PARAMETERS

For every distinct VRBT that can be materialized, a declaration must
appear in the JES2 initialization data set. The following 'is a sample
of such declarations.

LINE2 UNIT=SNA
RMT2 LUTYPEl ,CONSOLE ,BUFSIZE=512 ,NUMIPU=l
R2.PR1 SEP,LRECL=-255
R2.PUl SEP,LRECL=-255
R2.RDl CLASS=A
LINE3 UNIT=SNA
RMT3 LUTYPEl,CONSOLE,BUFSIZE=512,NUMIPU=l
R3.PRl SEP,LRECL=-255
R3.PUl SEP,LRECL=-255
R3.R0l CLASS=A

-75-



Section 14

APPENDIX D -- VTAM DECLARATIONS

* The VTAI generation deck must include declarations of all the ACBNAMEs
*that appear in the ACENAME pool in APPLALOC/APPLFREE. For use with
*JES2, the following form of declarations is recommended. Note that it
* is necessary to change the declaration of JES2 itself to include the

"PARSESS=YES' option.

*A03JES2 APPL ACBNAME=JES2,EAS=20,PARSESS=YES,AUTH=(ACQ)
*A08ARPAA APPL ACBNAME=JESVRBTA ,EAS=5 ,PARSESS=YES

A08ARPAB APPL ACBNAME=JESVRBTB ,EAS=5 ,PARSESS=YES
A08ARPAC APPL ACBNAME=JESVRBTC,EAS=5,PARSESS=YES
A08ARPAD APPL ACBNAME=JESVRBTD,EAS=5 ,PARSESS=YES
A08ARPAE APPL ACBNAME=JESVRBTE ,EAS=5 ,PARSESS=YES
A08ARPAF APPL ACBNAME=JESVRBTF ,EAS=5 ,PARSESS=YES
A08ARPAG APPL ACBNAME=JESVRBTG ,EAS=5 ,PARSESS=YES
A08ARPAH APPL ACBNAME=JESVRBTH,EAS=5,PARSESS=YES

*A08ARPAI APPL ACBNAME=JESVRBTI ,EAS=5 ,PARSESS=YES
A08ARPAJ APPL ACBNAME=JESVRBTJ ,EAS=5 ,PARSESS=YES

76e

':7 a



Section 15

APPENDIX E -- ALLOCATING VTAM ID'S

Frequently, an ACF/VTAM secondary application program is not tied to a
particular Application Identifier (APPLID). In fact, where the same
program may be in use by several jobs concurrently, it is imperative
that each instance use a different APPLID, i.e. be able to dynamically
allocate APPLID's.

To facilitate this purpose, the APPLALOC program defines a group of
APPLID pools. Each such pool contains a group of APPLIDS with the same
logical attributes. If a secondary application program can operate with
one APPLID from a given pool, then it should be able to operate with any
APPLID from that pool.

The APPLALOC package allocates and frees dynamically VTAM APPLIDs from
various pools. It has two entries: APPLALOC allocates an APPLID, and
APPLFREE frees it.

15.1 CALLING SEQUENCES

There are two entries, APPLALOC and APPLFREE. Both are designed to be
called from Assembler-language programs by a "BALR 14,15" instruction.
Register 13 must point to a standard save area.

15.2 ALLOCATING AN APPLID

To allocate an APPLID, call APPLALOC. On entry, RI must point to an
8-byte answer place where the 8-character APPLID will be returned. RO
must contain a pool number. On return, RI5 contains a return code.

1. 00 -> an APPLID has been returned. The caller has exclusive
system-wide control of it until APPLFREE is called, or until the
calling task terminates.

2. 04 -> no APPLID has been returned. The requested pool is
exhausted.

3. 08 -> no APPLID has been returned.

- 77 -

%S



15.3 FREEING AN APPLID

To free an APPLID, call APPLFREE. On entry, RI must point to an 8-byte
area containing the APPLID to be freed. On return, the calling task
will not own the APPLID. No indication is given whether it ever did.

15.4 APPLALOC AND THE OPERATING SYSTEM

APPLALOC is reentrant and read-only. Multiple copies can control the
same APPLID pools, so long as the multiple copies are identical. Thus
the routine should always be invoked via LINK, and never linkage-edited
with a program, since it is expected that the pools will be updated on
occasion. To facilitate this, APPLFREE does not check to ensure that
the passed APPLID is still in the pool.

While APPLALOC is well-qualified for residency, the expected update
frequency and urgency should be taken into account before deciding to
make it resident.

15.5 ALLOCATION TECHNIQUE

APPLALOC works by issuing a "SYSTEM" (not "SYSTEMS") ENQ on the selected 0
APPLID RNAME, using QNAME "VTAPPLID", and requesting exclusive control.
APPLFREE does the corresponding DEQ.

The selection of an APPLID is done by scanning the internal table for
the requested pool, and issuing conditional ENQ macros until either one
succeeds or the table is exhausted. In order to ensure that all S
candidates are tried before giving up, the scan is sequential and
circular. In order to minimize the successful search path, the initial
scan point is selected randomly, using the low-order bits of the binary
time of day.

15.6 DEFINING THE APPLID POOLS

The actual APPLID pools are defined when APPLALOC is assembled, through
the use of the APPOOL macro.

Conventionally, pool 0 is a general-purpose pool. Other pool numbers
must be in the range 1-254. The assigned numbers need not be conti-
guous, and the pools need not be defined in any particular order. Pool
number 255 is used as an end-of-list indicator, so do not attempt to
define a pool with that number.

- 78 -

pS

- 4. 4 ~ % % ~ **.%* ~ %.*44e. e% . e e- ,e-4



It is highly reccommended that each pool be made significantly larger
than the anticipated need would require, since the instruction path to
the determination that a pool is exhausted can be a long one.

A sample pool definition is listed below.

APPLALOC CSECT TO HOLD THE ACTUAL NAME POOLS:
SPACE

BEGPOOLS DS OF
APPOOL 0, X

ARPARMOO,ARPARMO1, X
ARPARM02, ARPARM03, X
ARPARMO4,ARPARM05

SPACE
APPOOL 1, X

ARPARM06,ARPARM07, X
ARPARM08,ARPARM09, X
ARPARM10,ARPARM11, X
ARPARM12,ARPARM12, X
ARPARM14,ARPARM13, X
ARPARM16

SPACE
APPOOL , TERMINATES POOLS

-79 -

;; ;::- -'?<: ;; -: 'b:':':-:-'--? -: <'.- .". , ;-<Z-.>:.-4.- ;?'.':?-'--";-'- .-'-."i'" < ;< -'< 04



REFERENCES

1 Braden, Network RJS Program Logic Summary, Document s-145, Ofice of
Academic Computing, UCLA, October 26, 1973.

2 IBM Corporation, Advanced Communication Function for VTAM:
Programming. IBM Document SC27-0449, October, 1980.

3 IBM Corporation OS/VS2 MVS JCL. IBM Document GC28-0692, May, 1979.

4 IBM Corporation, Operator's Library: OS/VS2 MVS JES2 Commands. IBM
Document GC23-0007, January, 1979.

5 IBM Corporation, OS/VS2 MVS System Programming Library: JES2. IBM
Document GC23-0002, January, 1979.

6 IBM Corporation, OS Assembler H Language. IBM Document GC26-3771,
June, 1974.

7 IBM Corporation, OS/VS DOS/VSE VM370 Assembler Language. IBM Document
GC33-4010, March, 1979.

8 IBM Corporation, OS PL/1 Checkout and Optimizing Compilers: Language
Reference. IBM Document GC33-0009, October, 1976.

9 Ludlam, OAC-JES2 Operators's Guide for Remote Bisynch Terminals.
Temporary document, Ofice of Academic Computing, UCLA, September 7,
1980.

- 80 -

V % N



p a v -. - - -vw- - -

PART IV

THE UCLA VIRTUAL LINE TERMINAL SUPPORT PACKAGE '

This section is separately available
as UCLA Document TR-25.

% %



Section 1

OVERVIEW OF THE VLT

The UCLA Virtual Line Terminal (VLT) package simulates line-oriented
terminals connected to ACF/VTAM (reference 1) application programs such
as TSO (reference 9). It is a reentrant subroutine package that
creates, manages, and destroys VLT's under the direction of an operator
program. The purpose of the support subroutine package is to isolate
the VLT operator program from the peculiarities of VTAM process
addressing and connection and transmission protocols.

A VLT consists of a keyboard and a line printer, simulating an IBM 3767
buffered typewriter terminal (reference 8). The keyboard is of the
unlocked variety. Although the actual transmission of data uses
half-duplex contention protocol, collisions are handled by the VLT code,
and are not visible to the operator program. Nevertheless, that program
must not assume that the two directions of data transfer operate fully
independently, and it must never monitor only one channel to the
exclusion of the other, since this could cause deadlock.

The operator program uses VLT entries to materialize and destroy a VLT.
Once the VLT is successfully materialized, it uses VLT entries to
schedule input, output, and attention interruptions.

0

I -

i

-82-



1.1 CONVERSATIONAL PARTNERS

It is intended that the VLT support package enable any program operating
in MVS batch or TSO to drive any VTAM application program that supports
the IBM 3767 typewriter terminal, with the most immediate goals being
IBM TSO and OBS WYLBUR (reference 10). One of the parameters given the
subroutine entry that materializes the VLT describes the VTAM appli-
cation program by giving its VTAM logical unit name and a protocol type
indicator. Both these values should be gotten from the systems
programmer who generates VTAM for the installation. Basically, the VLT
supports two connection protocols, which we have arbitrarily called type
1 and type 2.

1.1.1 Connection Protocol Type 1

Type 1 protocol is the basic protocol used by most multi-terminal-task
time-sharing systems. In this protocol, the VTAM application program is
addressed directly by the VLT subroutines, and conversations can begin
immediately. It is expected that connections to OBS WYLBUR will use
this type of protocol, when OBS announces VTAM support for line-terminal
access to WYLBUR.

1.1.2 Connection Protocol Type 2

Type 2 protocol is the protocol used by IBM TSO and similar multi-ad-
dress-space systems. In this protocol, the program that is addressed
directly by the VLT subroutines is merely a router program. That
program must create the final conversational partner and must pass the
connection to it before conversations can begin. The VLT must cooperate
in this connection passing, so it must know that this type of protocol
is to be used.

.l

83 -



ie
1.2 THE VLT INTERFACE

The VLT package functions as a pseudo-process under the control of the
operator program; however, it is not a task. The VLT code can operate
in a mode where it never blocks in any form, neither explicit nor
implicit, and neither during a normal entry nor during an asynchronous
exit routine. For these reasons, the interface between the VLT and its
operator program is conceptually divided into two parts: the request
interface, which is transaction oriented; and the control interface,
which is co-routine oriented.

The request interface defines five types of VLT transactions: open,
close, get, put, and attention. Each such transaction is described by
a VLT queue element (VQE), and a transacton is initiated when a VQE is
passed to the VLT. Every VQE contains an OS Event Control Block
(ECB), and the corresponding transaction is completed when that ECB is
posted by the VLT. Between the initiation and completion of a
VQE-related request, the request is said to be "pending". The
operator program can keep any number of VQE's pending, with the effect
of arbitrarily deep buffering of input and output requests. VQE's are
scheduled by the VLT entries named after the transactions: VLTOPEN,
VLTCLOS, VLTGET, VLTPUT, AND VLTATTN.

The control interface is the vehicle for managing the VLT pseudo-process
without using tasking or any form of blocking. Essentially, the
operator program gives the VLT the address of a single VLT Master ECB,
and the VLT causes this one ECB to be posted as the result of the
completion of every elementary event that would cause blocking if the
VLT were a true task. The operator program agrees that whenever it 0
finds this ECB posted, it will call the VLT package so that the
completed elementary event can be handled. The VLT can have many
outstanding elementary events at the same time; however, the Master ECB
represents them all. The operator program should not be concerned
with what the posting of that ECB represents, but it should understand
that it never represents the completion of any transaction associated .0
with the request interface.

It does not matter what VLT entry point is used to give control to the
VLT package in response to the posting of the Master ECB. Since many
elementary internal events must complete in order to complete a single
operator request, it will usually be the case that reentry will be
through an entry that does not schedule a request. The VLTCONT entry,
which represents a "continue" operation, is provided for this case.
VLTCONT merely gives control back to the VLT so that it can do whatever
it needs to do. Except when using the special OPEN/CLOSE interface (see
ENSURING WAIT-FREE OPERATION) it never hurts to call VLTCONT, whether
the Master ECB is posted or not. Likewise, it is not necessary to
call VLTCONT if one of the entries associated with the request interface
could be used instead.

So the operator program has considerable freedom in selecting a mode of
integration of the two interfaces. The simplest such programs will use
request-scheduling entries only when a request is needed, without regard

84

C%"),Q" % ~~~~~~~~~~~~. .. _....... . -....... . ...... . .... .............. ':'" "'"" "'



to the state of the Master ECB, and will use VLTCONT only when the
master ECB is found posted, without regard to whether a request could be
scheduled at the same time. In such an program, all pending event ECB's
should be scanned after every call to a VLT entry point.

The transaction events represented by the VQE ECB's always complete
synchronously to program execution; therefore, the operator program
need never block on such ECB's, although it may if it wishes. The
elementary internal events represented by the Master ECB usually
complete asynchronously; therefore, the operator program must monitor
this ECB when it is voluntarily blocked. The servicing of the Master
ECB is not critical in real time, so the operator program need not be
concerned with monitoring it during involuntary blocks (as during the
LOAD or OPEN SVC's).

One cardinal rule must be follwed: if the operator program does
wish to block on a VQE ECB, it may not do so without simultaneously
blocking on the Master ECB. To disobey this rule is to deadlock the
task.

1.3 ERROR HANDLING

The initial version of the VLT will support little or no error recovery.
In general, an abnormal postcode from any VLT entry should be inter-
preted as a non-recoverable error condition affecting the entire VLT.
Referring to the definition of macro VLTRTCD in the appendix entitled
ASSEMBLER DECLARATIONS, you will see that codes "OK" and "PURGE" (0 and
1) are "normal", while all greater codes are "abnormal". Once an
abnormal code has been received, the operator program should probably
call VLTCLOS to finalize the VLT.

1.4 TASKING CONSTRAINTS

Theoretically, it is possible to call the VLT entries from various
tasks; however, this is strongly discouraged. The various VLT entries
are not protected from multiple concurrent entry, and so multi-task
calls must be strictly serialized by the operator program. There is one
definite requirement. the VTAM ACB must be opened and closed by the
same task. This is easily managed if the operator program uses the
special non-blocking OPEN/CLOSE interface (described later), and issues
OPEN and CLOSE itself. However, if th- operator program allows the VLT
to issue OPEN and CLOSE, it cannot tell reliably which call to which
routine will actually cause the critical operation to be issued. In
such a case, multi-task calls are dangerous.

- 83 - °

" " ' ' " "' " :" '" •' L" "-" '-'L -"- ," ':"- - .'." '" '"'" 2"" -"''- "•'- "" "''"



1.5 ENSURING WAIT-FREE OPERATION

The VLT itself does not require a wait-free environment; however, many
of its using programs may have that requirement, so mechanisms are
provided to support it. There are three operations needed by the VLT
which can cause implicit blocks. These are: OPEN for the VTAM ACB,
CLOSE for the VTAM ACB, and LINK to the APPLALOC or APPLFREE external
entries. If the operator program does not mind these blocks, the VLT
will allow them to occur. Otherwise, the operator program must take
measures to prevent them.

To prevent blocking during LINK, the operator program should ensure that
entries APPLALOC and APPLFREE are in virtual storage and available to
the current task whenever the VLT subroutines are being used. Because
these entries constitute a system-wide pool of ACBNAMEs that is subject
to update, there should only be one copy of them in the system;
therefore, they should not be linkage-edited into any load module. An
operator program with critical blocking requirements will have a
mechanism for issuing LOAD and DELETE without blocking the critical
task.

To prevent blocking during OPEN and CLOSE, the operator program can
define, in the VLTOPEN call, a special OPEN/CLOSE interface to the VLT.
This interface is largely independent of the request and control
interfaces, and works this way: The operator program defines a one-word
OPEN/CLOSE parameter list (which need not be initialized) and an
OPEN/CLOSE ECB. Whenever the VLT requires OPEN or CLOSE, it will
initialize the OPEN/CLOSE parameter list, and it will post the ECB with
a code indicating whether OPEN or CLOSE is desired. The master ECB is 0
NOT posted concurrently. It is the responsibility of the operator
program to issue the OPEN or CLOSE macro-instruction and to complete or
abandon the operation before reentering the VLT with this handle via any
entry point (even the "null" entry VLTCONT). If the VLT is reentered
with a pending OPEN incomplete, the VLTOPN request will fail. If it
is reentered with a pending CLOSE incomplete, it will issue CLOSE
itself, thus incurring uncontrolled blocks for the operator program.
The VLT is rather adamant about getting its ACB closed in one way or
another.

Actually, the operator program need not monitor the OPEN/CLOSE ECB at
all times. An OPEN request is only possible while a VLTOPN VQE is
pending, and a CLOSE request is only possible while a VLTCLS VQE is
pending. The VLT subroutines will not alter the ECB or parameter list
except at the moments of requesting OPEN or CLOSE processing; otherwise,
those words are considered to belong to the operator program.

86

",- ,i °, ,- i- .i i. ,- i- ..- .- .. ', -' ,' -- -- .- - - ... ..." .' ..,- . . ..- - ,- .. .- - ' - , - -, -. v . - , . ... ., -.--



1.6 THE VLT PACKAGE ENVIRONMENT

All VLT entries are PL/I (optimizing compiler) compatible (reference 7)
through the "OPTIONS (ASSEMBLER)" facility. Canned declarations are
provided for both the PL/I and the Assembler caller. The PL/I declara-
tions treat ECB's as FIXED BIN (31) data.

The VLT support subroutines are contained in two control sections

1. VLTSUBS contains the bulk of the code. It is about 5600 bytes
long.

2. VLTTABS contains code and tables to support the formatting of
VTAM RPL's for the VLTLOG function. It can be placed in such a
way by the linkage edit that it will remain paged out when
logging is not enabled. If you can guarantee that logging will
never be enabled, it can be deleted from the load module. It is
just under 4K bytes long. This section is identical to the one
of the same name which is a part of the UCLA Virtual Remote Batch
Terminal (VRBT) support package.

In addition to the static storage occupied by these control sections,
each materialization of a VLT will acquire approximately 3K bytes of
working storage from subpool 101. This storage is released when
VLTCLOS is posted complete.

1.7 VLT RECORD FORMATS

All data records handled by VLTGET and VLTPUT are formatted as segments
of an interactive terminal control stream. The actual stream character-
istics are determined by the application program on the other end.
These things are known about TSO's requirements on the stream:

1. The inbound stream can pack as many lines as will fit into a
buffer. Each is terminated by the EBCDIC "newline" character.

2. A line cannot be split accross inbound buffers.

3. The outbound stream can pack multiple lines into a buffer, and
may also split lines accross buffers. In any case, lines are
terminated by "newline".

The VLT appears to the system to be an IBM 3767 buffered typewriter
terminal. Thus the maximum buffer size that can be transmitted in
either direction is 256 bytes. An attempt to send more than this will
cause an unrecoverable error on the VLT keyboard.

The VLT support subroutines do not examine, interpret, or transform data
in any way.

0

87 -

%



' :. , : : : . ::a ,-7P.-r , , 7 . .. J".," -. r '-. -Y - . ' - 7 - . - -7 . - .-.

1.8 KEYBOARD MANAGEMENT

The VLT is, for all practical purposes, an unlocked-keyboard device.

It is never illegal to call VLTPUT to put a buffer to the keyboard.

Most operator programs need not concern themselves beyond that fact.

However, there are moments when an output buffer is "chained" to a

following buffer. This situation can be likened to a locked keyboard,

since the VLT will hold any pending keyboard buffer until the "chained"

buffer has been received. Presumably, chained buffers are all ready

for transmission at once, so that receiving subsequent buffers will not

cause delay. For the occasional program which may need to make use of
this fact, the VLT distinguishes, when it POSTs a VLTGET request

complete, whether a subsequent buffer is chained to the one being

delivered. Programs which have no need for this information should

treat the two cases the same.

-88 -



Section 2

VLT SUBROUTINE CALLS

The VLT subroutine calls are described below in terms of PL/I CALL
statements. The Assembler calls are the same, since the PL/I
declarations all use the "OPTIONS(ASSEMBLER)" facility to avoid passing
descriptors. The "VL" bit must be set in the VLTOPEN call; however,
for compatibility with possible future versions, it is wise to set it in
all calls.

When a call includes a VQE, it creates a pending event. The operator
program should usually preset the data pointer and data length fields of
the VQE before creating the pending event. The called entry will clear
the ECB before control returns. The chain fields of the VQE are for
the internal use of the VLT, and need not be initialized or examined by
the operator program. While an event is pending, its VQE belongs to
the VLT, and the operator program should not alter it or examine it in
any way other than to test or wait on its ECB. At all times when it
does not represent a pending event, the VQE belongs to the operator
program, and the VLT is not aware of its existence.

2.1 VLTOPEN -- MATERIALIZING THE VLT

The VLTOPEN routine materializes a VLT, connects it to the designated
application program, and optionally passes a LOGON string to that
program. The handling of LOGON strings depends on the application
program, but in any case the string is formatted as the application
program expects it, and not as a string for processing by VTAM Unfor-
matted System Services (USS). In VTAM terms, this means that it is the
contents of the DATA field of a standard VTAM LOGON.

In the specific case of TSO, you have two options: you can pass a
standard TSO LOGON command, with or without the verb "LOGON," or you can
pass a null string. In the latter case, TSO will act as if it received
the single word "LOGON," and it will prompt the user for his logonid and
password. In no case is it necessary for the TSO LOGON to be completed
for the VLTOPN to complete, since TSO may want to use the opened VLT to
acquire parameters necessary to complete the LOGON.

The calling sequence is:

CALL VLTOPEN (handle, vqe, partner, masterecb,
[, modifiers ])

- 89

%



where:

1. "handle" is a pointer variable which receives a value identifyi, g
this opening VLT. This value must be passed unaltered to all
subsequent calls until it is invalidated by VLTCLOS. This
mechanism permits the VLT package to be reentrant, and allows an
operator program to manage more than one VLT at a time. The
handle is set and is valid on return from the call to VLTOPEN.
It is not dependent on the successful materialization of the VLT,
or on the posting of any ECB. Once you are in possession of such
a handle, storage resources are allocated to the VLT, and VLTCLOS
must eventually be called to free them.

2. "vqe" is the name of a VQE to represent this pending request.
The data pointer and length fields should be initialized to
describe th LOGON string. If this is to be null, then the data
length field should be set to zero. This string is not

considered to be terminal input, so it need not end with a
"newline" character.

The ECB will be cleared before control returns, and it will be
posted when the open operation is complete. If the postcode
portion of the posted ECB contains a non-zero value, the open
failed, and the operator program must call VLTCLOS to release
allocated resources. The possible postcodes are listed in an
appendix.

The chain fields of the VQE are for the internal use of the VLT,
and should not be initialized or examined by the operator
program.

3. "partner" is a structure describing the VTAM application program
to be addressed. It is nine bytes long, and consists of a
1-byte connection protocol number followed by the 8-character
VTAM LUNAME of the program. The protocol number is examined
only in its lower four bits, so it can be either a binary number
or its EBCDIC equivalent, at the convenience of the operator
program. Initially, only connection protocols 1 and 2 are
supported. Examples of valid "partner" strings are:

CL9'1WYL
CL9'2TSO

4. "masterecb" is the name of an ECB to be posted when the VLT
requires control of the task. It will be cleared and posted by
VLT code, so the caller need never initialize it or set it in any
way.

5. "modifiers" is a structure containing data that directs VLTOPEN
to set up alternate modes of VLT operation. It is an optional
argument which, if provided, can change the behavior of the VLT.
The argument is a data structure that contains several different

- 90 °

e. .



elements. In order to simplify things, the structure is defined
to consist of fixed-length items, and the first item is a bit
mask that determines which of the following items contain data
and which are to be ignored. The structure is defined by
assembler macro VLTOPTS, which is listed in an appendix. The
data that can be passed include:

* A bit mask that filters the generation of messages for the

VLTLOG routine. Each bit in the mask corresponds to a class
of messages. If the bit is one, the corresponding messages
will be generated; otherwise, they will not. The correspon-
dence is:

bit 0 = completed VTAM RPL's.
bit 1 = RU buffers from completed RPL's.
bit 2 = comments.
bit 3 = the postcodes of important ECB's.
bit 4 = entry into each internal routine.
bit 5 = exit from each internal routine.

If this mask is not supplied, the default is to log RPL's and
comments.

* An 8-character VTAM logon mode name. If this is not

supplied, the IBM logon mode entry named INTERACT will be used.
This is the entry that supports the IBM 3767.

* A fullword parameter list and ECB to support the special

OPEN/CLOSE interface. If this interface is not defined here,
the VLT will issue OPEN and CLOSE internally, causing uncont-
rolled blocks in the operator program's task.

-V

-91-

NN



2.2 VLTCLOS -- DESTROYING THE VLT

The VLTCLOS routine does whatever remains to be done to destroy a VLT
and release any resources allocated to it. Depending on the state of
the VLT, this may involve aborting any active data streams, discon-
necting from the VTAM application program, disconnecting from VTAM, and
freeing main storage.

VLTCLOS will purge any other pending VQE's of any kind, posting their
ECB's with the "PURGE" postcode.

The calling sequence is:

CALL VLTCLOS (handle, vqe)

where:

1. "handle" is the handle value returned by VLTOPEN. After this
request is posted complete, this value will be invalid.

2. "vqe" is the name of a VQE to represent this pending request.
The data pointer and length fields are not used; however, for
future compatibility, it is wise to initialize the length field
to zero.

The ECB will be cleared before control returns, and it will be
posted when the close operation is complete. Until it is posted,
the operator program must continue to monitor the Master ECB, and
to call VLTCONT. After it is posted, VLTCONT must not be
called.

The chain fields of the VQE are for the internal use of the VLT,
and should not be initialized or examined by the operator
program.

-92-

(A "r % 1



2.3 VLTPUT -- SENDING DATA THROUGH THE VIRTUAL KEYBOARD

The VLTPUT routine schedules a buffer of keyboard data to be sent to the
VTAM application program. Control returns at once, but the buffer and
VQE may not be reused until the ECB is posted. VLTPUT may be called at
any time there is a handle defined. If the VLT is not yet fully open,
the request will remain pending until it is.-

The operator program can schedule as many pending VQE's through this
routine as it wishes. They will always be posted in the order queued,
so the operator program should keep track of the oldest such VQE for
purposes of testing completion. Of course, the operator program must
also be prepared to ignore queued requests that are completed with the
"PURGE" postcode.

The calling sequence is:

CALL VLTPUT (handle, vqe)

where:

1. "handle" is the handle value returned by VLTOPEN.

2. "vqe" is the name of a VQE to represent this pending data
transfer. The caller should initialize the data pointer and
data length fields to describe the data being passed. This
cannot exceed 256 bytes.

The ECB will be cleared before control returns, and it will be
posted when the buffer can be reused. Possible postcodes are
listed in an appendix.

The chain fields of the VQE are for the internal use of the VLT,
and should not be initialized nor examined by the caller.

9-

'°S

- 93 - S

.5

'%S



2.4 VLTGET -- RECEIVING DATA FOR THE VIRTUAL PRINTER

The VLTGET routine schedules a buffer to receive printer data from the
VTAM application program. Control returns at once, but the buffer and
VQE may not be reused until an ECB is posted. VLTGET may be called at
any time there is a handle defined. If the VLT is not yet fully open,
the request will remain pending until it is.

The operator program can schedule as many pending VQE's through this
routine as it wishes. They will always be posted in the order queued,
so the operator program should keep track of the oldest such VQE for
purposes of testing completion. Of course, the operator program must
also be prepared to ignore queued requests that are completed with the
"PURGE" postcode.

The calling sequence is:

CALL VLTGET (handle, vqe)

where:

1. "handle" is handle value returned by VLTOPEN.

2. "vqe" is the name of a VQE to represent this pending data
transfer. The caller should initialize the data pointer and
length. The length must be that of the empty buffer, and should
thus be positive and less than 256.

The ECB will be cleared before control returns, and it will be
posted when the data transfer is complete. The postcodes are
defined by macro VLTRTCD, which is listed in Appendix B. There
are two kinds of postcodes: "normal" and "abnormal". If the
postcode is "abnormal", then an unrecoverable error has occurred,
and data is not available. There are three "normal" postcodes:

" "OK" -- the operation completed normally in every way.

" "OKCH" -- the operation completed normally, and there is more
output chained to this buffer. Most programs will treat this
the same as "OK".

* "PURGE" -- the operation was rescinded by the VLTCLOS, VLTPRG,
or VLTATTN routines.

When data is actually placed in a buffer, the length field will be
reduced to that of the actual data. Excess data will simply be
delivered in a subsequent buffer.

The chain fields of the VQE are for the internal use of the VLT, and
should not be initialized nor examined by the caller.

-94-



wsusv~r~wv - -vgnnr WuVMWWWUr WV WUW WV WV WV W' S-u wv. WW WW3 .S ,*Vwv~w~~ww

• 4
'.-

2.5 VLTATTN -- PRESSING THE VIRTUAL BREAK KEY

The VLTATTN routine schedules a VTAM SIGNAL command to the VTAM
application program, including four bytes of binary "signal data".
Normally, this is equivalent to pressing the "break" or "ATTN" key;
however, its actual interpretation is up to the VTAM application
program. In the specific case of TSO, it is believed, though at this
writing it is not verified, that the signal data is interpreted as a
count of simultaneous attention interruptions, with a count of 1
representing the usual case of a single pressing of the break key.

In keeping with its usual use, VLTAfTN will purge any pending VLTPUT
requests, posting their VQE ECB's with the "PURGE" postcode. On the VLT
level, VLTATrN has no direct effect on the outbound (printer) data
stream.

VLTATTN may be called at any time there is a handle defined; however, if
VLTOPEN or VLTCLOS is pending, the request will be rejected with a
postcode indicating a harmless request reject that does not affect VLT
operation. In that case, pending VLTPUT VQE's will not be purged.

The calling sequence is:

CALL VLTATTN (handle, vqe)

where:

1. "handle" is the handle value returned by VLTOPEN.

2. "vqe" is the name of a VQE to represent this pending request.
The caller should initialize the data length field to the value
of the signal data, normally binary 1. The data pointer field
is not presently used. r

The ECB will be cleared before control returns, and it will be
posted when the VQE can be reused. Possible postcodes are listed
in an appendix.

The chain fields of the VQE are for the internal use of the VLT,
and should not be initialized nor examined by the caller.

'do

-95-

%"



2.6 VLTCONT -- SHARING THE TASK WITH THE VLT

The VLTCONT routine merely returns control of the operator program's
task to the VLT pseudo-process, so that, if it is logically unblocked,
it can proceed. Normally this entry is called as a result of the
operator program's having found the VLT Master ECB posted. This entry
does not schedule any pending request; however, it may complete one or
more previously pending requests. So, although there is no ECB
associated with this call, on return from it a scan of pending VQE's
might be wise. Unnecessary calls to VLTCONT do no harm.

The calling sequence is:

CALL VLTCONT (handle)

where "handle" is handle value returned by VLTOPEN.

j

969



4.

2.7 VLTPRG -- PURGING PENDING EVENTS

The VLTPRG routine purges pending VQE's from either the VLTGET queue or
the VLTPUT queue. Purged VQE's will be posted with the "PURGE"
postcode. Notice that the queues contain only VQE's that have been
scheduled by the operator program, but have not yet been dequeued and
made the objects of active VTAM operations. "Active" buffers of the
latter type cannot be purged by this call.

VLTPRG completes at once, and does not use a VQE or ECB. The calling
sequence is:

CALL VLTPRG (handle, 
options)

where

1. "handle" is handle value returned by VLTOPEN.

2. "options" is a 2-bit string, aligned on a byte boundary,
specifying which queues are to be purged. If the first bit is
1, then the VLTGET queue is purged. If the second bit is 1,
then the VLTPUT queue is purged. All combinations of these two
bits are valid.

'4'.

-97 -

L R,: ,J " e '. a ." .'.,' " '.'/",'." , , " " ".r ,,_,°.'.'.v - - ,".'. . " '."." .". . " " ," " "." . - o-" ," ,- S

~ ~ ~q



2.8 VLTKNT -- COUNTING PENDING EVENTS

The VLTKNT routine counts pending VQE's on the VLTGET queue and the
VLTPUT queue. Notice that the queues contain only VQE's that have been
scheduled by the operator program, but have not yet been dequeued and
made the objects of active VTAM operations. "Active" buffers of the
latter type cannot be counted by this call.

VLTKNT completes at once, and does not use a VQE or ECB. The calling
sequence is:

CALL VLTPRG (handle, counts)

where

1. "handle" is handle value returned by VLTOPEN.

2. "counts" is a sequence of two halfwords to receive the counts.
The first halfword receives the count from the VLTGET queue, and
the second receives that from the VLTPUT queue.

- 98 -

.-.



N

Section 3

THE VLT LOG

For debugging purposes, the VLT support subroutines can be made to log
all VTAM events. This is accomplished through a weak enternal
reference to symbol VLTLOG. If this reference is resolved in the
running program, then it will be used in a CALL to dispose of an edited
line of log data. If the reference is not resolved, then the log data
line is not generated.

The VLTLOG routine must be an Assembler routine that is capable of being
executad under any TCB and under either a PRB or an IRB. Nevertheless,
entry into the routine is strictly serialized, even if log data must be
lost to accomplish that. Therefore, the routine need not necessarily
be reentrant, unless, of course, more than one VLT is to be materialized
at a time.

When determining whether to use a VLTLOG routine, remember that it will
execute under the task of the operator program, that any blocks in it
will delay the operator program, and that it does not have access to the
Master-ECB mechanism for preventing blocks. If blocking must be
prevented, then the VLTLOG mechanism must not be used.

The VLTLOG calling sequence has deliberately been made incompatible with
PL/I. Register 1 is either zero, in which case there is no data
associated with this call, or it points directly to a 1-byte length
field followed by that many bytes of edited data. Register 13 points
to a useable save area. Registers 14 and 15 are as used by "BALR
14,15". 'egister 0 always contains the same value in its low order
three bytes -- the address of a fullword that the VLTLOG can use for
whatever purpose it wishes. For instance, a reentrant routine would
store the address of its dynamic storage here. The address is bound to
a particular VLT materialization. The top byte of register 0 contains
status bits, as follows:

* bit 0 = 1 --> this is not the first entry to VLTLOG. If this
bit is 0, the routine should do whatever initialization it
requires.

* bit 1 = 1 -- > this will be the last entry to VLTLOG. If this
bit is 1, the routine should do whatever finalization it
requires.

* bit 2 = 1 -- > asynchronous log data was lost during the
previous entry to VLTLOG. The routine may ignore this

- 99 -

.



situation if it wishes, but usually it should pass on a
lost-data indicator in its own output stream.

- 00 -

~ ~ -...x.'%



K ,

Section 4

THE VLT DEMONSTRATION PROGRAM

The VLTDEM program is a PL/I main program that is used as a TSO command
processor. Its purpose is to exercise or demonstrate the VLT
subroutine package, functioning as a VLT operator program communicating
with TSO.

VLTDEM relays input from its user, but due to the blocking nature of TSO
TGET, it must run without a terminal input operation pending, so input
must be entered after an attention interruption. Input consisting of a
single "*" results in an attention interruption being passed on to TSO.

Output received from TSO is printed on the user's terminal preceeded by
the string "*****".

VLTDEM includes a VLTLOG routine that issues TPUT's to the user's
terminal. The logging mask, along with some other options, is
requested by VLTDEM before it opens its VLT. Data that are requested of
the VLTDEM user include the remote VTAM application program's VTAM
LUNAME, an optional LOGON string, and a VLTLOG mask. The mask is in
the form of a character string with no real format. The presence of
particular letters in the string will cause matching bits in the mask to
be set. The presence of other characters is ignored. The correspon-
dence is:

R = completed VTAM RPL's.
B = completed VTAM RU buffers.
C = comments.
P = ECB posts.
E = internal routine entries.
X = internal routine exits.

•- C

- 101 -

%!a



Section 5

APPENDIX A -- PL/I DECLARATIONS

DECLARE
(VLTOPEN ENTRY (POINTER, *, CHAR(9), POINTER,*)
(VLTGET, VLTPUT, VLTArrN, VLTCLOS) ENTRY (POINTER,*,
VLTPRG ENTRY (POINTER, BIT(2) ALIGNED),
VLTKNT ENTRY (POINTER, *),
VLTCONT ENTRY (POINTER)) OPTIONS (ASSEMBLER, INTER),
1 VQE BASED,

2 (VQEFLNK, BQEBLNK) Ptr, /* INTERNAL LINK FIELDS *
2 VQEMECB POINTER, /* TRANSFER COMPLETE ECB *
2 VQEDPTR POINTER, /* ADDR OF BUFFER
2 VQEDLNG FIXED BIN(31), /* LENGTH BUFFER OR DATA *

1 VECB BASED, /* ECB FORMAT: *
2 VECBCTL BIT(16), /* CONTROL FIELDS
2 VECBCODE FIXED BIN(15), /* STATUS CODE

1 VOPTS BASED,
2 VOMASK,

3 (VOMLOG, 1* THERE IS A LOG MASK *
VOMMOD, /* THERE IS A MODE NAME ~
VOMOCI, 1* THERE IS AN 0/C INTFC *
VOMSPARE (13)) BIT (1) UNALIGNED,

2 VOLOG bit (16), /* LOG MASK
2 VOMOD CHAR (8), /* LOGON MODE NAME
2 VOOCI, /* OPEN/CLOSE INTERFACE: *
3 VOOCIECB POINTER, /* ECB
3 VOOCIPTR POINTER; /* PTR TO ACB

-102-

4N.



Section 6

APPENDIX B -- ASSEMBLER DECLARATIONS

This section lists the macros available and gives a brief explanation of
their function. Then it includes the actual unexpanded macro text for
each one. These macros are simple, with parameterization extending
little beyond labels, so the unexpanded text is expected to be
reasonably well self documenting. Available macros are:

VLTATTN defines the calling sequence to VLTATTN.
VLTCLOS defines the calling sequence to VLTCLOS.
VLTCONT defines the calling sequence to VLTCONT.
VLTGET defines the calling sequence to VLTGET.
VLTKNT defines the calling sequence to VLTKNT.
VLTOPEN defines the calling sequence to VLTOPEN.
VLTOPTS defines the VLTOPEN options structure.
VLTPARM is a package invoking all the other macros

that define calling sequences.
VLTPRG defines the calling sequence to VLTPRG.
VLTPUT defines the calling sequence to VLTPUT.
VLTRTCD defines the postcodes for VQE ECB's.
VLTVQE defines the VLT queue element.

The text of the macros is:

MACRO
&V VLTATTN
&V DS OF PARAMETER LIST TO VLTATTN:
&V.HDL DS A -- > HANDLE FROM VLTOPEN.
&V.END DS OX'80' VL BIT.
&V.VQE DS A -- > VQE WITH ATTENTION ECB.

MEND

MACRO
&V VLTCLOS
&V DS OF PARAMETER LIST TO VLTCLOS:
&V.HDL DS A -- > HANDLE FROM VLTOPEN.
&V.END DS OX'80' VL BIT.
&V.VQE DS A -- > VQE WITH CLOSE ECB.

MEND

-103-

0i
b *1



MACRO
&V VLTCONT
&VDS OF PARAMETER LIST TO VLTCONT:

&V.END DS OX'80' VL BIT.
&V.HDL DS A ->HANDLE FROM VLTOPEN.

MEND

MACRO
&V VLTGET
&VDS OF PARAMETER LIST TO VLTGET:

&V.HDL DS A -- > HANDLE FROM VLTOPEN.
&V.END DS OX'80' VL BIT.
&V.VQE DS A ->VQE DESCRIBING BUFFER.

MEND

MACRO
&V VLTKNT
&VDS OF PARAMETER LIST TO VLTKNT:

&V.HDL DS A -- > HANDLE FROM VLTOPEN.
&V.END DS OX'80' VL BIT.
&V.OPTS DS A ->3H FOR OUTBOUND, INBOUND,

* ATTENTION COUNTS.
MEND

MACRO
&V VLTOPEN
&VDS OF PARAMETER LIST TO VLTOPEN:

&V.HDL DS A ->ACO) TO RECEIVE HANDLE.
&V.VQE DS A ->VQE WITH OPEN ECB & LOGON DATA.
&V.PART DS A ->PARTNER DESCRIPTOR.
&V.END DS OX'8O' VL BIT WHEN NO OPTIONS PRESENT.
&V.MECB DS A -- > MASTER EVENT ECB.
&V.ENDO DS OX'8O' VL BIT WHEN OPTIONS ARE PRESENT.
&V.OPTS DS A ->OPTIONS STRUCTURE.

MEND

-104-



MACRO
&L VLTOPTS &DSECT=-YES l

AIF ('&DSECT' NE 'YES').NODSCT
&L.OPTS DSECT DESCRIBING THE OPTIONAL ARGUMENTS:

AGO .COM
.NODSCT ANOP
&L DS OF THE OPTIONAL ARGUMENTS
.COM ANOP
&L.OMAP DS BL2 OPTIONAL ARGUMENT MAP:
&L.OMLOG EQU X'80' THERE IS A LOG MASK
&L.OMMOD EQU X'40' THERE IS AN LOGON MODE NAME
&L.OMOPN EQU X'20' THERE IS AN OPEN/CLOSE INTERFACE

SPACE
&L.OLOG DS BL2 LOG MASK
&L.OMODE DS CL8 LOGON MODE NAME
&L.OOCI DS OXL8 OPEN/CLOSE INTERFACE:
&L.OOCE DS F PTR TO ECB TO POST TO REQUEST
&L.OOPEN EQU 0 CALLER TO: OPEN THE ACB, OR .1.

&L.OCLOS EQU I CLOSE THE ACB.
&L.OOCL DS A ADDRESS OF OPEN/CLOSE PARAM LIST.

MEND

MACRO
&D VLTPARM
&D DSECT DESCRIBING PARAMETERS TO VLT SUBROUTINES:

SPACE
VPO VLTOPEN

SPACE
ORG &D

VPC VLTCLOS
SPACE
ORG &D

VPK VLTKNT
SPACE
ORG &D

VPG VLTGET
SPACE
ORG &D

VPPR VLTPRG
SPACE
ORG &D

VPP VLTPUT
SPACE
ORG &D

VPA VLTATTN
ORG
ORG &D

VPCO VLTCONT
ORG
MEND

- 105 -



MACRO
&V VLTPRG &HEADER=YES

AIF ('&HEADER' NE 'YES').NOHDR
&V DS OF PARAMETER LIST TO VLTPRG:
.NOHDR ANOP
&V.HDL DS A --> HANDLE FROM VLTOPEN.
&V.END DS OX'80' VL BIT.
&V.OPTS DS A -- > BL.2:
&V.PGET EQU X'80' PURGE OUTBOUND STREAM
&V.PPUT EQU X'40' PURGE INBOUND STREAM
&V.PAT'rN EQU X'20' PURGE ATTENTION STREAM

MEND

MACRO
&V VLTPUT
&V DS OF PARAMETER LIST TO VLTPUT:
&V.HDL DS A -- > HANDLE FROM VLTOPEN.
&V.END DS OX'80' VL BIT.
&V.VQE DS A --> VQE DESCRIBING DATA.

MEND

MACRO
&P VLTRTCD POST CODES FROM VLT SUBROUTINES:
*"NORMAL" VLT RETURN CODES:
&P.OK EQU 0 OPERATION COMPLETED NORMALLY
&P.OKCH EQU 1 NORMAL WITH CHAINED BUFFER
&P.PURGE EQU 2 BUFFER PURGED BY ANOTHER ENTRY
* "ABNORMAL" VLT RETURN CODES:
&P.PERR EQU 3 "I/O" ERROR IN A "PUT" OPERATION
&P.GERR EQU 4 "I/O" ERROR IN A "GET" OPERATION
&P.AERR EQU 5 THERE ARE NO APPLIDS LEFT,
* OR PASSED-IN APPLID IS BAD.
&P.RSERR EQU 6 ERROR IN REQSESS REQUEST
&P.BNERR EQU 7 BAD BIND IMAGE
&P.SGERR EQU 8 ERROR IN SIGNAL
&P.SLERR EQU 9 ERROR IN SETLOGON
&P.OSERR EQU 10 ERROR IN OPENSEC
&P.RTERR EQU 11 ERROR IN RESET
&P.OPERR EQU 12 CANNOT OPEN ACB: UNKNOWN REASON
&P.OPMDEF EQU 13 NETWORK SEEMS MISDEFINED
&P.OPSTOR EQU 14 STORAGE SHORTAGE
&P.OPSHDN EQU 15 VTAM SHUTTING DOWN
&P.TSERR EQU 16 ERROR IN TRMSESS
&P.QERR EQU 17 VQE QUEUEING ERROR
&P.TOERR EQU 20 RESERVED FOR EXT OPEN TIME-OUT ERR

MEND

106 -

|9



MACRO 
p-&V VLTVQE &HEADER=YES

AIF ('&HEADER' NE 'YES').NOHDR
&V DS OF
.NOHDR ANOP
&V.FLNK DS A INTERNAL FORWARD CHAIN.,&V.BLNK DS A INTERNAL BACK CHAIN.

&V.RECB DS A REQUEST ECB.
&V.DPTR DS A POINTER TO DATA BUFFER.
&V.DLNG DS A LNG OF BUFFER OR DATA.
&V.XTNT EQU *-v VQE EXTENT.

MEND '.5

p

.5-

- 107 -

I.



F P d AV'IMWV LmLV' V r v117, IL d.,i

Section 7

APPENDIX C -- VTAM DECLARATIONS

The VTAN generation deck must include declarations of all the ACBNAMEs
that appear in the ACBNAIE pool in APPLALOC/APPLFREE. For use with TSO,
the following form of declarations is reccommended.

A08ARPAA APPL ACBNAME=TSOVLTA
A08ARPAB APPL ACBNAME=TSOVLTB
A08ARPAC APPL ACBNAME=TSOVLTC
A08ARPAD A'nL ACBNAME=TSOVLTD
A08ARPAE APPL ACBNAME=TSOVLTE
A08ARPAF APPL ACBNAME=TSOVLTF
A08ARPAG APPL ACBNAME=-TSOVLTG
A08ARPAH APPL ACBNANE=TSOVLTH
A08ARPAI APPL ACBNANE=TSOVLTI
AO8ARPAJ APPL ACBNAME=TSOVLTJ

- 108-



REFER ENCESi

1 IBM Corporation, Advanced Communication Function for VTAM:
Programming. IBM Document SC27-0449, October, 1980.

2 IBM Corporation OS/VS2 MVS JCL. IBM Document GC28-0692, May, 1979.

3 IBM Corporation, Operator's Library: OS/VS2 MVS JES2 Commands. IBM - ',

Document GC23-0007, January, 1979.

4 IBM Corporation, OS/VS2 MVS System Programming Library: JES2. IBM a'

Document GC23-0002, January, 1979.

5 IBM Corporation, OS Assembler H Language. IBM Document GC26-3771,
June, 1974.

6 IBM Corporation, OS/VS and DOS/VS Assembler Language. IBM Document
GC28-6514.

7 IBM Corporation, OS PL/l Checkout and Optimizing Compilers: Language
Reference. IBM Document GC33-0009, October, 1976.

8 IBM Corporation, OS/VS2 TSO Terminal User's Guide. IBM Document

GC28-0645, June, 1978.

9 IBM Corporation OS/VS2 TSO Command Language Reference. IBM Document
GC28-0646, June, 1978.

10 On Line Business Systems Inc., OBS WYLBUR Reference Manual. Office
of Academic Computing, UCLA, Revision, July 1979.

jP

- 109 " .-1

0A
% %P

~ ~>:~ .- :'.~°*,



PART V

FAKEMSG -- DEBUGGING MSG PROGRAMS WITHOUT

EXCHANGE

This section is separately available
as UCLA Document UCNSW-410.

40



.

Section 1

OVERVIEW OF FAKEMSG

FAKEMSG is a subroutine package that supports the execution of programs
that use the UCLA implementation of the PL/MSG subroutine package
(reference 1) in an environment where that package cannot itself be
supported. In particular, FAKEMSG allows NSW server processes such as
the File Package (reference 2), Foreman (reference 3), or Batch Job
Package (reference 4) to be executed in the absence of the MSG Central
(reference 5) package. FAKEMSG was written to allow the checkout of r
these processes when MSG Central was available but was unreachable due
to the lack of an implementation of the UCLA inter-job communication
mechanism, the EXCHANGE (reference 6).

In order to communicate with any of the processes mentioned above, it is
necessary to have a calling process, usually a Works Manager (reference
7) to invoke it. Without access to the external NSW system, this need
is met by the NSWDRIVE (reference 8) utility program. NSWDRIVE uses
PL/MSG directly; however, the actual NSW processes all use it through
the PL/PCP subroutine package (reference 9). Therefore, FAKEMSG
implements just that subset of the PL/MSG interface that is used by
NSWDRIVE and PL/PCP.

.

,1 e"

l'0l



=.w~in~w-ns-wrj -V -. - -WV V WVWV W W- -WVWV WVW - WVWV VW .; ~ V ,U4

Section 2

STRUCTURE OF FAKEMSG

FAKEMSG operation is based upon the UCLA THREADER package (reference

10). Essentially, whenever MSG would spawn a process by submitting a
batch job or by logging on a TSO session, FAKEMSG does so by creating a

thread of control via the THSTART subroutine of THREADER. This requires
that the routines of the processes be declared and coded as RECURSIVE,
but that is already becoming a requirement of our NSW code, since we
intend that it operate under THREADER for other reasons (reference 11).

FAKEMSG provides and maintains the PROCESS common datum that PL/MSG uses
to identify the current MSG process. THREADER, because it was designed
to be compatible with PL/MSG, also maintains that datum across thread
swaps.

In keeping with THREADER's use of static storage to tie together the
entities that it supervises, FAKEMSG uses static storage to anchor
queues of control blocks that define MSG processes, pending events, and
direct connections. Given this queue structure, implementation of most
PL/MSG primitives is straight-forward.

FAKEMSG always operates with an MSG incarnation number of 1. It
maintains a static instance counter that begins at l and increments by 1
for each process instance created. Thus the process naming conventions
of FAKEMSG are compatible with those of MSG Central. Names are unique
within the scope of the job containing FAKEMSG, but not across such
jobs. This is compatible with the FAKEMSG design goals, since the lack A
of communication with MSG Central means that the universe of names can
never be greater than the local job.

FAKEMSG is written in PL/I. It uses a small Assembler-language control
section (FAKEMSGA) for: 1) transforming the MSGWAIT call into the
THWAIT call; 2) getting and Freeing storage that will be shared by
control threads, and that cannot thus be allocated directly from
thread-dependent PL/I code; 3) simulating the MSGJOUR entry point
through TPUT; 4) defining a table of supported generic process names and
their entry points.

- 112 -

]%



_I
'V7.

Section 3

SPECIFIC PL/MSG SERVICES

The sections below describe each PL/MSG entry point that has a FAKEMSG
counterpart, and lists restrictions and differences in behavior. In
general, any PL/MSG entry point not listed here does not reference MSG
Central directly, and so may be included directly from the PL/MSG
library.

Whenever a pending event is created by the entries that send or receive
messages or alarms, an event-matching scan is triggered. For two events
to match, these criteria must be met:

1. They must be of opposite polarity (send, receive).

2. They must be of the same type (generic, specific, alarm).

3. The receiver's generic name must match that requested by the
sender (only 10 characters are checked).

4. If the type is not "generic" then the receiver's instance number
must match that requested by the sender.

5. If the type is "alarm" then the receiver must be armed for
alarms.

FAKEMSG does not support the case, supported by MSG central at UCLA, of
a process with the "queue-generics" attribute. Generic messages to such
a process are supposed to be queued for a single process instance,
regardless of whether that instance is receptive to generic messages at
the moment. FAKEMSG is unaware of this attribute, and it will start a
new process whenever there is no "receive-generic" pending event to
match a "send-generic".

113 -

'N NS
Zs - . % ... . .



3.1 MSGMP -- MATERIALIZE AN MSG PROCESS

This call is fully supported except that the "termination signal" ECB
can never be posted. It creates control blocks that define a new MSG
process, and sets the PROCESS shared datum accordingly. Each new
process is assinged a "nickname" consisting of its generic name followed
by the low-order three digits of its instance number, all truncated to
10 characters. This is sufficient to accomodate the longest generic
name currently in use ("FOREMAN").

3.2 MSGSTOP -- DESTROY AN MSG PROCESS

This call is fully supported. It deletes the control blocks created by
MSGMP and sets PROCESS to NULL.

3.3 MSGSETP -- DECLARE POSTING MECHANISM

This call is fully supported. It alters entries in the signal-mechanism
table for the current process.

3.4 MSGAA -- ARM PROCESS FOR ALARMS

This call is fully supported.

3.5 MSGJOUR -- LOG MSG EVENTS

The user has two options here, selected by his Linkage-Editor control
statements.

If he uses entry MSGJOUR of FAKEMSG, all calls to MSGJOUR will result in
the passed data string being TPUT after it is concatenated behind the
current process "nickname". No message filtering will occur.

If he replaces MSGJOUR with entry FAKEJOU of FAKEMSGA, the passed
messages will be put out without the "nickname". In this case, calls
explicitly stating a message type code between 7 and 10 (inclusive) will
be suppressed. This range of message types corresponds to logging of
input and output data records by the File Package.

4 - 114 -



3.6 MSGRGM -- RECEIVE GENERIC MESSAGES

This entry creates a pending event and schedules a subsequent event
matching scan. It ignores its timeout parameter. Only one RGM event
can be pending at a time.

3.7 MSGRSM -- RECEIVE SPECIFIC MESSAGES

This entry creates a pending event and schedules a subsequent event
matching scan. It ignores its timeout parameter. The special-sche-
duling flags are always set to zeros. Only one RSM event can be pending
at a time.

3.8 MSGRA -- RECEIVE ALARMS

This entry creates a pending event and schedules a subsequent event
matching scan. It ignores its timeout parameter. Only one RA event can
be pending at a time.

3.9 MSGSGM -- SEND GENERIC MESSAGES
u.,

This entry creates a pending event and schedules a subsequent event
matching scan. It ignores its timeout and wait-enable parameters.
Wait-enable is considered to be always set.

3.10 MSGSSM SEND SPECIFIC MESSAGES

This entry creates a pending event and schedules a subsequent event
matching scan. It ignores its timeout and special-scheduling param-
eters.

'us'

115 -

e % % %."

_ '',~r ' w'K, ,,,, ,,. ,,,... . .74 , .L'.', - . . ,,,,._'. , ,,- .. ' .-.. £. ,. M-,.



3.11 MSGSA -- SEND ALARMS

This entry creates a pending event and schedules a subsequent event
matching scan. It ignores its timeout parameter.

3.12 MSGRSND -- RESCIND PENDING EVENTS

This entry is a no-operation.

3.13 MSGRSNC -- RESYNCHRONIZE COMMUNICATION

This entry is a no-operation.

3.14 MSGOC -- OPEN DIRECT CONNECTIONS

This entry scans the queue of pending connections for a match on the
incoming request. It ignores the bytesize and queue depth paiameters.
It also ignores the connection-type parameter, except that if the
connection-type is "TCAM" or "VTAM" the connection is posted complete at
once (for these special UCLA connections, the other partner is the
user's TSO terminal, not a process). If a match is found, both
processes are posted. Otherwise, a pending connection is created and
left on the queue.

3.15 MSGCC -- CLOSE DIRECT CONNECTIONS

This entry is fully supported.

3.16 MSGGET -- RECEIVE CONNECTION DATA

This entry is fully supported except that it does not allow stacked
calls. The caller must wait for the completion of one MSGGET before
calling the entry again tor the same connection. Existing MSG processes
follow this practice.

116 -

% % '% -.. % ,.% . --.- -- - . .- -. - -- .. % .



n nl ~a aa an ~ .. ,W n X RW na S .ffl MW -M fl MR ru -9 tl rum 7 I 'MW Frw 'F I W" F..v- %M Iv 1_ VWtI W. _J -d IVJ U- WJ -1 J-. 1Q,

p

3.17 MSGPUT -- SEND CONNECTION DATA

This entry is fully supported except that it does not allow stacked
calls. The caller must wait for the completion of one MSGPUT before
calling the entry again for the same connection. Existing MSG processes
follow this practice.

3.18 MSGEOD -- PREPARE FOR CONNECTION CLOSE

This entry is a no-operation.

1.1

1%-

.5

- 117 - -5

i,5

.5



Section 4

CONCLUSIONS

V
FAKEMSG is based upon the THREADER package (reference 10). The use of
PL/I and THREADER made FAKEMSG almost trivial to write.

Experience with FAKEMSG has shown us that intra-address-space MSG
communication can be done simply and effectively. If we decide to move
unlike MSG processes into the same address space, we will consider
expanding FAKEMSG into a mechanism to effect all communication that does
not need to cross address-space boundaries.

118

;%



REFERENCES

1 Ludlam and Rivas, PL/MSG - An MSG Interface for PL/I. Document
UCNSW-401, Office of Academic Computing, UCLA, November 15, 1980.

2 Braden and Ludlam, FP/360 - The NSW MVT File Package. Document
UCNSW-204, Office of Academic Computing, UCLA, November 20, 1980.

3 Ludlam, FM/360 - The NSW MVT Foreman. Document UCNSW-205, Office of
Academic Computing, UCLA, December 1, 1980.

4 Ludlam, BJP/360 - The NSW MVT Batch Job Package. Document UCNSW-207,
Office of Academic Computing, UCLA, December 1, 1980.

5 Rivas, Ludlam, and Braden, An Implementation of the MSG Interprocess
Communication Protocol. Document TR-12, Office of Academic
Computing, UCLA, May, 1977.

6 Braden and Feigin, Programmer's Guide to the Exchange. Document TR-5,
Office of Academic Computing, UCLA, March, 1972.

7 Schaffner and Sluizer, Works Manager Subsystem Specifications.
Document CADD-7906-1117, Massachusetts Computer Associates, Inc.,
June 1, 1979.

8 Braden and Ludlam, Computing Services -- National Software Works:
Final Technical Report. Document TR-27, Office of Academic
Computing, UCLA, In preparation.

9 Ludlam, PL/PCP - An NSW Procedure Call Protocol Package for PL/I.
Document UCNSW-402, Office of Academic Computing, UCLA, November
15, 1979.

10 Ludlam, THREADER A Commutator for PL/I Coroutines. Document
UCNSW-409, Office of Academic Computing, UCLA, June 1, 1981.

119 -

N



11 Ludlam, NSW Processes Under MVS -- Basic Plan. Document UCNSW-213,
Office of Academic Computing, UCLA, June 1, 1981.

1.2

120.'

-S


